天空光遮挡法水体光谱测量便携版漂浮式光学浮标 研发与应用

田礼乔1,李森1,孙相晗1,孙兆华2,宋庆君3

武汉大学 测绘遥感信息工程国家重点实验室,武汉 430079;
Easy Ocean Technology Ltd., Halifax B3H1N4, Canada;
自然资源部国家卫星海洋应用中心,北京 100081

摘 要:离水辐亮度L_{*}(Water-leaving radiance)是水色遥感现场观测中的关键物理量之一,由其计算获得的遥 感反射率R_{*}(Remote sensing reflectance)是水色遥感参数反演的最基本参数。天空光遮挡法 SBA(Skylight-blocked approach)可以直接测量水体离水辐亮度,作为一种新兴方法具有较强的推广应用潜力。本文介绍了基 于天空光遮挡法的便携版漂浮式光学浮标 FOBY-P(the Portable Floating Optical Buoy),其具有浮体自阴影小、布 放简便等优势,在中国近海开展的现场观测实验结果表明:(1) FOBY-P结构设计上能在一定程度上避免太阳天 顶角较大条件下浮体的自阴影遮挡影响,初步评估结果表明其400—700 nm 自阴影影响在浑浊水体<5%,在清洁 水体约为1%—3%;(2)在高海况下,传感器倾角随海况增大而变化剧烈,FOBY-P能保证在3—4级海况下观测 倾角小于5°的有效观测占比超过50%;(3)通过与基于水面以上法的三通道 TriOS RAMSES 高光谱辐射计同步观测结果对比,二者—致性较高(r>0.9),在490—565 nm 波长范围内R_{*}的偏差<5%,差异可能由观测方法不同引起,水面之上法水—气界面校正的不确定性可能是引起部分偏差的重要因素之一。该研究表明便携版漂浮式光 学浮标(FOBY-P)可满足近海较高等级海况(3—4级)下的复杂水体现场观测需求,随着针对FOBY-P的数据 质量控制与处理方法的不断优化,有望获取更高质量的现场水体光谱观测结果。

关键词:水色遥感,水体光谱,现场测量,天空光遮挡法,便携版漂浮式光学浮标

引用格式:田礼乔,李森,孙相晗,孙兆华,宋庆君.2022.天空光遮挡法光谱测量便携版漂浮式光学浮标研发与应用.遥感学报,26 (1):211-220

Tian L Q, Li S, Sun X H, Sun Z H and Song Q J. 2022. Development and Application of a Portable Floating Optical Buoy based on the Skylight-blocked Approach. National Remote Sensing Bulletin, 26(1):211-220[DOI:10.11834/jrs.20221285]

1 引 言

离水辐亮度 L_{*} (Water-leaving radiance)是水 色遥感现场观测中关键物理量之一,由其计算获得 的遥感反射率 R_{s} (Remote sensing reflectance)是水 色遥感参数反演的最基本参数,也是描述水体光谱 特性的重要参数之一(Antoine, 2012)。现场准确 测量的水体离水辐亮度是支撑水色遥感监测的重要 基础保障,并广泛应用于辐射定标、大气校正与参 数反演的研究与应用过程(Morel, 1980; Zibordi 等,2006; Zibordi等,2009; Hooker等,2002; Lee等,2013)。但目前为止,由于测量方法和技 术的局限性,准确测量离水辐亮度仍然是一个极 具挑战性的工作。

常见的水体遥感反射率现场获取方法有3种: 剖面法、水面之上法和天空光遮挡法。水面之上 法是目前II类水体光谱特性研究中最常用的测量 方法,但是由于无法直接测得离水辐亮度,需要 剔除总信号中的天空光。专家学者提出了多种天 空光剔除方法(Mueller等,2002; Lee等,2010;

收稿日期: 2021-04-30; 预印本: 2021-08-18

基金项目:国家重点研发计划(编号:2018YFB0504900,2018YFB0504904);国家自然科学基金(编号:42071325,42176183);测绘遥感信息工程国家重点实验室专项科研经费、武汉大学"985计划"和国家重点实验室装备专项基金

第一作者简介:田礼乔,1980年生,男,教授,研究方向为水体光学装备研发与组网观测,国产卫星水色遥感大数据处理与基于深度学习 算法的水环境参数反演与监测应用等。E-mail: tianliqiao@whu.edu.cn

通信作者简介:李森,1996年生,男,硕士研究生,研究方向为水体光学装备研发与组网观测。E-mail: lisen9368@whu.edu.en

Cui等, 2013), 但相对复杂的后处理流程对遥感 反射率结果仍带来较大不确定性(Lee等, 2013)。天空光遮挡法 SBA (Skylight-blocked approach)是一种新兴的现场水体光谱测量方法 (Lee等, 2013)。SBA通过安装一个锥形遮光罩, 遮光罩阻挡了大气散射光和水面反射的天空光信 号进入辐亮度探头,这样就可以实现L的直接测 量,从而减小了后处理过程带来的不确定性;同 时,SBA具有测量步骤简便,受环境影响较小的 优势(田礼乔等, 2020)。图1展示了天空光遮挡 法观测方案的演变, 遮光罩由最初管状设计 (Lee 等, 2010; Ahn 等, 1999) 到球形设计 (Tanaka 等, 2006) 再到目前的锥形设计, 既保证了辐亮 度探头视场不受遮挡,又尽量减小体积,减少了 自阴影的影响。Lee等(2013)基于Satlantic HyperPro Ⅱ系统配套锥形遮光罩设计的 SBA 观测系 统已经比较完善,但是由于两探头分别位于浮体 不同侧,太阳天顶角较大条件下,辐亮度探头在 背对太阳时容易受到浮体阴影遮蔽(Lee等, 2019; Shang 等, 2017; 陈旭磊 等, 2016)。

近年来,天空光遮挡法的数据处理方法和观 测规范不断完善。数据处理主要集中于自阴影校 正方面,Shang等(2017)和Yu等(2021)提出 了针对SBA的自阴影校正模型;陈旭磊等(2016) 和Lin等(2020)采用现场实验的方式,在控制实 验环境的条件下评估了自阴影校正模型的有效性。 观测规范方面;Lee等(2019)从理论方法、装备 设计、测量前传感器定标、暗电流校正、测量周 期等环节,以及观测后数据质量控制、自阴影校 正等方面进行了系统的总结;Ruddick等(2019) 重点分析了天空光遮挡法的不确定性来源。数据 评价方面;Wei等(2021)就SBA在不同水体类型 现场观测不确定性开展了精度评价工作。上述研 究为天空光遮挡法在理论、规范、数据处理上做 了很好的总结,推动了SBA的应用和发展。

同时,基于天空光遮挡法的现场观测数据已 经广泛应用于大气校正(Wang等,2020;Wei等, 2018)、水色要素反演(Jiang等,2021;Pahlevan 等,2020;Wei等,2019)、水表面辐射透过率估 算(Zoffoli等,2017;Wei等,2015)、数据真实 性检验(Pahlevan等,2017;Pahlevan等,2016) 等方面。上述系列应用一方面体现了SBA在水色 遥感领域的应用前景,另一方面需要专家学者在 装备研发上不断完善。 装备研发方面,双通道设计将辐照度探头与 辐亮度探头集成,设置于浮体中央,能有效避免 观测方位角变化对浮体阴影的影响,如图1(d)。 基于该设计理念,Tian等(2020)进行了系统设 计,先后研制了两个版本的漂浮式水体光谱测量 系统,或称漂浮式光学浮标FOBY(the Floating Optical Buoy)。该研究中详细介绍了浮标系统的设 计原理和具体模块组成,并在珠江口、洪湖开展 现场实验。但是上述漂浮式光学浮标仍然存在一 定的不足,如圆形浮体在太阳天顶角较大条件下 可能会产生较大自阴影,采用的传感器缺少现场 观测时倾角等姿态记录,观测设备体积较大,布 放困难,不利于高效的现场测量、数据质量控制 等工作,从而影响现场测量效率与观测数据精度。

因此本研究基于SBA研发了一款便携版漂浮 式光学浮标 FOBY-P(the Portable Floating Optical Buoy),并在中国近海开展现场观测实验,评价其 在仪器自阴影、传感器倾角、数据质量等方面的 表现。

2 便携版漂浮式光学浮标研发

便携版漂浮式光学浮标(FOBY-P)采用双通 道设计,根据圆形浮标FOBY(Tian等,2020)进 行优化,设计更加小型化,减小了浮体自阴影影 响。FOBY-P的结构设计如图2所示,浮体采用三 脚架作为支撑,三脚架臂长65.2 cm,直径小于 1 cm,支撑架末端安装浮体与配重块,浮体提供 系统在水面观测的浮力,配重块可以根据现场测 量中遮光罩入水深度需要进行调节。其他硬件包 括光谱测量模块、数据采集模块及供电模块进行 了小型化设计并集成于中央主机,极大地缩小了 体积。数据采集模块增加姿态传感器,可以记录 每次光谱观测的传感器倾角,精度为0.1°。光谱仪 和传感器指标设计可参见(Tian等,2020)中的 参数介绍。

上述设计具有以下优势:(1)减小了浮体产 生的自阴影。相对于圆形浮体,三脚支架体积小, 因此产生更少的自阴影,并且,通过自阴影校正 模型可以进一步减小自阴影的影响;(2)在较高 等级海况下水体中保持较稳定的观测姿态。三角 形的支撑架设计,减小了波浪引起的浮标观测倾 角;配重块重量可调整,可以保证遮光罩的入水 深度一致,减少不同观测站位测量值之间的不确 定性;(3)方便运输和现场实验布放。中央主机 体积小、重量轻,小型化设计方便运输携带,使 得现场观测更加便利,1-2人即可利用FOBY-P 完成现场测量;该设计同时增加了系统的稳定性, 避免了野外复杂环境对数据传输天线、GPS等设备的干扰,使系统更具鲁棒性。

Fig. 2 The configuration and filed photo of the Portable Floating Optical Buoy (FOBY-P) $\,$

3 现场观测与数据处理

3.1 实验区

中国近海受陆源物质、海底地形、季风、季 节性洋流、台风、降水等多因素综合影响,水体 光学特性复杂且时空差异明显(李铜基,2012)。 实验区主要包括中国海域两部分,中国东部沿海及 南海水域。中国东部沿海水域包含渤海、黄海及东 海北部(118.94°E—124.51°E,29.46°N—40.49°N), 测试时间为2018-10-07—11-05,共33个站点。 南海水域主要位于南海海南岛南部沿岸(108.31°E—112.20°E, 17.45°N—18.50°N),测试时间为2018-10-02—10-12, 共38个站点。现场观测时最高风 速达14m/s, 浪高2.3m,海况变化剧烈。

中国近海受陆源物质、海底地形、季风、季节性表层海流、台风、降水等多因素综合影响,水体光学特性复杂且时空差异明显(李铜基,2012)。现场观测时最高风速达14 m/s, 浪高2.3 m,海况变化剧烈。

3.2 数据处理与评价指标

实验过程遵循观测规范(Lee等,2019),每 个观测站位正式测量前调整配重块重量,保证现 场观测中遮光罩入水深度控制在2cm左右(Tian 等,2020)。为了避免船体阴影的影响,漂浮式光 学浮标布放位置距离船30m左右,每个站点分别 观测3次,每次连续测量不少于100条同步的离水 辐亮度(*L*_s)及下行辐照度(*E*_s)光谱记录,光谱 仪定标的波长范围为365—889 nm,按照式(1) 计算遥感反射率(*R*_s):

$$R_{\rm rs} = \frac{L_{\rm w}}{E_{\rm s}} \tag{1}$$

数据处理按照 Lee 等(2019)提出的规范进行:(1)剔除观测结果中传感器倾角较大数据,以 5°为剔除阈值;(2)计算遥感反射率在 698 nm 处的概率密度函数,并剔除前后 15% 的数据,以 避免离水辐亮度数据被污染的情况;(3)利用保 留数据计算均值及标准差获得最终的遥感反射率 结果;(4)按照 Shang 等(2017)模型进行仪器自 阴影校正,模型中吸收系数 $a(\lambda)$ 和散射系数 $b_b(\lambda)$ 按照 Tian 等(2020)利用的方法进行测量和计算。

同时,在观测中采用三通道TriOS RAMSES高 光谱辐射计进行走航式水面之上法船载测量,该 系统共有两个辐亮度探头,一个用于观测总辐亮 度(*L*_i),一个用于观测天空光(*L*_{sky}),辐照度探头 观测下行辐照度(*E*_s),观测几何会自动调整按照 海洋光学规范推荐的天顶角40°和方位角135°进行 观测(Mueller等,2002),由式(2)计算水体遥 感反射率(*R*_s)。在本研究中,菲涅尔反射系数ρ, 通过非线性光谱优化方法和生物光学模型获得 (Cui等,2013)。

$$R_{\rm rs} = \frac{L_{\rm t} - \rho_f \cdot L_{\rm sky}}{E_{\rm s}} \tag{2}$$

研究中采用以下统计量评价 FOBY-P与 TriOS RAMSES 观测结果,包括相关系数 r(correlation

coefficient)、相对均方根偏差*r*RMSD(the Relative root-Mean Square Deviation)、偏差(bias)、平均绝 对百分比误差 MAPD(Mean Absolute Percentage Difference)和无偏平均绝对百分比误差 SMAPD (symmetric Mean Absolute Percentage Deviation),公 式如下:

$$r = \frac{\sum_{i=1}^{n} (S_{i,1} - \overline{S_1}) (S_{i,2} - \overline{S_2})}{\sqrt{\sum_{i=1}^{n} (S_{i,1} - \overline{S_1})^2 \sum_{i=1}^{n} (S_{i,2} - \overline{S_2})^2}}$$
(3)

$$r\text{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{s_{i,1} - s_{i,2}}{s_{i,2}} \right)^2} \times 100\%$$
(4)

bias = median
$$((S_{i,1} - S_{i,2})/S_{i,2} \times 100\%)$$
 (5)

MAPD =
$$\frac{1}{N} \sum_{i=1}^{N} \left| \left(S_{i,1} - S_{i,2} \right) / S_{i,2} \right| \times 100\%$$
 (6)

SMAPD =
$$\frac{2}{N} \sum_{i=1}^{N} \left| \frac{S_{i,1} - S_{i,2}}{S_{i,1} + S_{i,2}} \right| \times 100\%$$
 (7)

式中, *S*₁与*S*₂分别表示两同步观测系统获得的遥感 反射率结果。

4 结果与讨论

4.1 现场观测水体光谱

经自阴影校正后现场遥感反射率结果如图3所示。曲线A展示了悬浮颗粒物主导的II类水体光谱特征,水体呈黄色,*R*_s光谱整体偏高,在570—671 nm有一个宽阔的反射峰,800 nm处有一较小的反射峰,呈现明显的"双峰"特征,在近红外波段的*R*_s大于0。曲线B展示了另一种II类水体光谱特征,*R*_s光谱在560 nm左右有明显的反射峰,水体呈浅绿色。曲线C展示了I类水体光谱特征,*R*_s光谱从400—700 nm呈逐渐下降趋势,至近红外波段其值趋于0,水体呈深蓝色,其光谱特征与(Lee等,2015)等研究结果一致。

4.2 仪器自阴影误差分析

自阴影评估和校正是天空光遮挡法数据处理 的关键问题(Ruddick等,2019)。在天空光遮挡 法中,遮光罩或浮体会产生阴影,造成水面入射 光量减少,从而影响 L_s 的观测。Shang等(2017) 将自阴影误差表达为遮光罩尺寸/底面直径R、太 阳天顶角 θ_w 、水体光学性质(吸收系数 $a(\lambda)$ 和散 射系数 $b_b(\lambda)$)的函数,如式(8)、式(9)所示。

$$\varepsilon = 1 - \exp\left(-K\frac{R}{\tan\left(\theta_{w}\right)}\right)$$
 (8)

$$K(\lambda) = (3.15\sin(\theta_w) + 1.15)e^{-1.57b_b(\lambda)}a(\lambda) + (5.62\sin(\theta_w) - 0.23)e^{-0.5a(\lambda)}b_b(\lambda)$$
(9)

式中, *R*受仪器设计决定, 遮光罩底面直径越大, 产生的自阴影误差也越大(陈旭磊等, 2016)。但

是除遮光罩外, 仪器浮体也会产生自阴影, 影响 水体光场。在SBA系统现场观测中, 辐亮度传感 器背朝太阳方向时(观测方位角为180°), 即使在 太阳高度较高情况下(θ_x =30°), 自阴影误差也会 达到25%—40%(Shang等, 2017), 上述误差只能 通过控制现场观测方位来避免, 难以通过算法进 行校正。

图 3 2018年FOBY-P获得的中国近海遥感反射率光谱 Fig. 3 The *R*_a spectra obtained by FOBY-P in the offshore sea of China in 2018

漂浮式光学浮标 (FOBY) 的圆形浮体设计更 好地避免了观测方位的影响,但是在太阳天顶角 较大条件下,仍然可能会产生自阴影,而FOBY-P 三脚支撑架浮体设计则尽可能地避免了浮体自阴 影影响。为了定量评估浮体不同形状对其自阴影 的影响,本研究采用蒙特卡洛模拟方法 (Gordon 等, 1975; 唐军武, 1999), 模拟漂浮式光学浮标 FOBY (Tian等, 2020) 与FOBY-P的自阴影误差。 模拟参数设置如下:太阳天顶角 $\theta_{*}=45^{\circ}$,水体光 学特性参数分别为叶绿素 a 浓度 Chl-a=5 mg/m³, 悬浮颗粒物浓度 SPM=3 g/m3, 有色可溶性有机物 在440 nm 处的吸收系数 ag(440)=0.3 m⁻¹, 遮光罩 底面直径 R=4 cm。得到模拟的不受自阴影影响的 遥感反射率R_{rs}^{simulated}和受自阴影误差影响下的两设 备遥感反射率R_F^{FOBY}及R_F^{FOBY-P},并计算二者的相对 偏差。如图4所示,由于FOBY圆形浮体产生更大 的自阴影, FOBY 直接获得的 R_{s} 相较于FOBY-P较 低。FOBY在400-700 nm 处的自阴影误差在8%-10%范围内, FOBY-P在相同波长范围误差在2%-5% 范围内。700 nm 后,由于遥感反射率值减小, 二者相对偏差均明显增大。这也一定程度上说明, 在该模拟条件下,相对于圆形版本的FOBY, 三脚 支撑浮体设计的FOBY-P自阴影更小,有望得到更

加准确的离水辐亮度和遥感反射率数据。当然由 于本身蒙特卡罗模拟存在一定的误差,具体情形 还需要进一步深入讨论。

图 4 蒙特卡罗模拟 FOBY 与 FOBY-P 自阴影影响下的遥感 反射率及相对偏差(θ_w=45°, Chl-a=5 mg/m³, SPM=3 g/m³, ag(440)=0.3 m⁻¹, R=4 cm)

为了进一步评价FOBY-P不同类型水体自阴影 影响,研究选取现场获取的几条典型光谱曲线, 用Shang等(2017)模型进行自阴影校正,并进行 校正前后的光谱比较。图5展示了浑浊水体(橙 色)与清洁水体(蓝色)自阴影校正前后FOBY-P 遥感反射率光谱。R_m^{shade}表示自阴影校正前遥感反射 率光谱, R^{cor}表示自阴影校正后遥感反射率光谱, APD为二者绝对百分比偏差。可以看出不同水体类 型自阴影误差存在一定差异但都在较低水平,相对 于清洁水体、浑浊水体自阴影影响相对较高。自阴 影误差在400-700 nm范围, 浑浊水体在2%-5%, 清洁水体<1%。700 nm 后,由于遥感反射率值变 小,尤其清洁水体在该波长范围基本为0,其二者 绝对百分比误差都有明显增大, 浑浊水体最高达 到约20%,清洁水体在5%左右。最终获得的遥感 反射率光谱的标准差也有一定差异,浑浊水体较 高,在400-500 nm约为 (5-6)×10⁻⁴,清洁水体 约为 (1-2)×10⁻⁴。上述结果表明, 在本次测量 中,在400-700 nm 清洁水体自阴影误差小于5%, 但浑浊水体受自阴影影响略大。虽然FOBY-P的小 型化设计进一步降低了自阴影影响,但仍建议采 用合适的校正模型进行数据的自阴影校正处理。

4.3 传感器倾角分析

传感器倾角可由姿态传感器记录,是评价现 场观测姿态的重要指标。在理想观测条件下,辐 射传感器应当沿竖直方向。现场观测时,由于受 水面浪涌等因素的影响,浮标摇摆导致辐射传感 器偏离竖直方向。传感器倾角会对下行辐照度*E*, 的测量产生较大的影响,特别是在晴空环境下影 响更大(Ruddick等, 2019)。数据处理规范中常 采用5°倾角作为阈值进行数据质量控制(Lee等, 2019),因此评估FOBY-P较高等级海况下的倾角 表现是十分必要的。

研究中将有辅助记录的59个站点实测风速及 浪高按照气象观测标准(张庆阳,1985)分为4级 海况,并统计分析不同海况下,仪器观测的倾角分 布,具体的数据如表1所示。在所有观测中,大部 分站点海况分布在2—3级,实测浪高0.1—1.25 m, 设备倾角随海况级别变高也相应变大。倾角平均 值从1级海况下的2.14°到4级海况下的6.26°,中 值与标准差也相应增加,表明浮标在高海况下倾 角姿态变化更加明显。

表 1 不同海况下的倾角统计 Table 1 The statistics of buoy tilts in different sea states

海况	1	2	3	4
风速/(m/s)	0.3—1.5	1.5—3.5	3.5—8.0	8.0—14.0
浪高/m	0-0.1	0.1—0.5	0.5—1.3	1.3—2.5
站点数目	2	18	37	10
光谱数目	100	780	1639	352
倾角平均值	2.14	4.56	5.78	6.26
倾角中值	2	4	5	5
倾角标准差	1.32	3.72	5.1	5.61

研究分别统计了观测数据在4级海况下倾角频 率分布及累计频率(图6)。在低等级海况(1级) 下,仪器姿态保持稳定,倾角分布主要集中于0°— 3°,以5°作为剔除阈值,98%的数据符合倾角条 件;随着海况增加,倾角逐渐增大分布向右移动, 以5°作为剔除阈值,在较高等级海况下(3—4级) 下约有50%以上的数据满足条件。上述研究表明 在较高等级海况下漂浮式光学浮标能保持一定的 姿态稳定性,虽然传感器倾角随海况级别升高而 变大,但按照现有的数据处理规范,仍能够保障 观测数据的有效率,方便后续数据质量控制。

4.4 近海观测数据对比

为了评估FOBY-P近海观测的数据质量,本文 将其与基于水面之上法的三通道TriOS RAMSES 高光谱辐射计获得的*R*。结果进行对比验证,共有 12个匹配结果。实验选取412、443、490、520、 565、670、750、865 nm 几个水色遥感典型波长进 行统计分析。

图7展示了两种观测方式获得遥感反射率的一 致性。详细的对比参数见表2,相关系数r在400— 800 nm均大于0.9,表明二者具有强相关性,但是 在865 nm处,由于遥感反射率值很小,二者相关 性表现较差。rRMSD,bias,MAPD,SMAPD定量 地刻画了不同波段遥感反射率测量值的差异,可以 看出在490—565 nm,二者差异性较小,观测结果 偏差在5%以内,在412 nm、443 nm和670 nm处在 5%—20%,部分差异可能是由观测方法不同引起 的,表面之上法水—气界面校正的不确定性也可能 是引起部分偏差的重要因素之一。在大于700 nm 后,两者的相对偏差较大,但绝对偏差值受低反 射率的影响并不大,基本与FOBY在内陆及河口水 域的观测结果较为一致。

表2 FOBY-P与TriOS RAMSES观测遥感反射率比较									
Table 2Comparison of R_{rs} obtained by FOBY-P andTriOS RAMSES									

波长/nm	r	rRMSD/%	bias/%	MAPD/%	SMAPD/%
412	0.92	27	10	21	18
443	0.98	19	9	14	12
490	1.00	7	2	5	5
520	1.00	6	-1	5	5
565	0.99	8	-5	7	8
670	0.99	24	-20	22	25
750	0.91	78	-77	76	123
865	-0.89	292	-171	236	145

5 结 语

漂浮式光学浮标的研发是推动天空光遮挡法 在水色卫星辐射定标、大气校正、水色要素反演 等领域广泛应用的基础。本文分析了天空光遮挡 法的观测装备研制、观测规范、数据处理等方面 的研究进展,并详细介绍了便携版漂浮式光学浮 标(FOBY-P)研发情况,该浮标具有浮体自阴影 小、观测姿态稳定、布放简便等优势。中国近海现 场观测实验分析表明:(1) FOBY-P结构设计上能 较好避免太阳天顶角较大条件下浮体的自阴影遮挡 影响。初步评估结果表明,其400-700 nm 自阴影 影响在浑浊水体<5%,在清洁水体约为1%-3%; (2) 传感器倾角随海况增大而变化剧烈, FOBY-P 能保证在3-4级海况下观测倾角小于5°的有效观 测占比超过50%;(3)通过与基于水面以上法的 三通道TriOS RAMSES高光谱辐射计同步观测R_结 果对比,表明二者结果一致性较高(r>0.9),在 490-565 nm内R。的差异<5%。未来可以进一步优 化漂浮式光学浮标设计,如研发可满足长时序定 点观测的柱状浮体对称布放观测传感器,根据传 感器方位信息挑选受自阴影影响最小的观测数据, 同时针对性地研究观测规范,进行不确定性分析 研究数据处理方法等。

志 谢 感谢陕西中科启航科技有限公司 (https://oceanx.cn/)、广州水色海洋技术有限公司 (http://www.guangzhoushuise.com/) 在系统开发 方面的支持。

参考文献(References)

- Ahn Y H, Ryu J H and Moon J E. 1999. Development of redtide and water turbidity algorithms using ocean color satellite. KORDI Report No. BSPE: 98721-00
- Antoine D. 2012. Ocean-Colour Observations from a Geostationary Orbit. Dartmouth, NS, Canada: International Ocean Colour Coordinating Group [DOI: 10.25607/OBP-103]
- Chen X L, Lin G, Shi L H, Shan Y J and Shang S L. 2016. Study on the shading issue of SBA in high-chlorophyll waters. Journal of Xiamen University (Natural Science), 55(2): 203-209 (陈旭磊,林 供,石良海,单宇杰,商少凌. 2016. 天空光遮蔽法在高叶绿素水 体中的阴影问题研究. 厦门大学学报(自然科学版), 55(2): 203-209) [DOI: 10.6043/j.issn.0438-0479.2016.02.010]
- Cui T W, Song Q J, Tang J W and Zhang J. 2013. Spectral variability of sea surface skylight reflectance and its effect on ocean color. Optics Express, 21(21): 24929-24941 [DOI: 10.1364/OE. 21. 024929]
- Gordon H R, Brown O B and Jacobs M M. 1975. Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean. Applied Optics, 14(2): 417-427 [DOI: 10.1364/AO.14.000417]
- Hooker S B, Lazin G, Zibordi G and McLean S. 2002. An evaluation of above- and in-water methods for determining water-leaving radiances. Journal of Atmospheric and Oceanic Technology, 19(4): 486-515 [DOI: 10.1175/1520-0426(2002)019<0486: AEOAAI>2. 0.CO; 2]
- Jiang D L, Matsushita B, Pahlevan N, Gurlin D, Lehmann M K, Fichot C G, Schalles J, Loisel H, Binding C, Zhang Y L, Alikas K, Kangro K, Uusõue M, Ondrusek M, Greb S, Moses W J, Lohrenz S and O'Donnell D. 2021. Remotely estimating total suspended solids concentration in clear to extremely turbid waters using a novel semi-analytical method. Remote Sensing of Environment, 258: 112386 [DOI: 10.1016/j.rse.2021.112386]
- Lee Z, Ahn Y H, Mobley C and Arnone R. 2010. Removal of surfacereflected light for the measurement of remote-sensing reflectance from an above-surface platform. Optics Express, 18(25): 26313-26324 [DOI: 10.1364/OE.18.026313]
- Lee Z, Pahlevan N, Ahn Y H, Greb S and O'Donnell D. 2013. Robust approach to directly measuring water-leaving radiance in the field. Applied Optics, 52(8): 1693-1701 [DOI: 10.1364/AO. 52. 001693]
- Lee Z, Wei J W, Shang Z H, Garcia R, Dierssen H, Ishizaka J and Castagna A. 2019. On-water radiometry measurements: skylightblocked approach and data processing (Appendix to IOCCG Protocol Series (2019)//Zibordi G, Voss K J, Johnson B C and Mueller J L, eds. Protocols for Satellite Ocean Colour Data Validation: In Situ Optical Radiometry. IOCCG Ocean Optics and Biogeo-

chemistry Protocols for Satellite Ocean Colour Sensor Validation, Volume 3.0. Dartmouth, NS, Canada : IOCCG

- Lee Z, Wei J W, Voss K, Lewis M, Bricaud A and Huot Y. 2015. Hyperspectral absorption coefficient of pureseawater in the range of 350-550nm inverted from remote sensing reflectance. Applied Optics, 54(3): 546-558 [DOI: 10.1364/AO.54.000546]
- Li T J. 2012. China's Coastal Oceans: Marine Optical Properties and Remote Sensing. Beijing: China Ocean Press (李铜基. 2012. 中 国近海海洋: 海洋光学特性与遥感. 北京: 海洋出版社)
- Lin H, Lee Z, Lin G and Yu X L. 2020. Experimental evaluation of the self-shadow and its correction for on-water measurements of water-leaving radiance. Applied Optics, 59(17): 5325-5334 [DOI: 10. 1364/AO.391633]
- Morel A. 1980. In-water and remote measurements of ocean color. Boundary-Layer Meteorology, 18(2): 177-201 [DOI: 10.1007/ BF00121323]
- Mueller J, Mueller J L, Pietras C, Hooker S B, Clark D K, Morel A, Frouin R and Fargion G S. 2002. Ocean optics protocols for satellite ocean color sensor validation, revision 3, volumes 1 and 2. NASA tech. memo 210004
- Pahlevan N, Schott J R, Franz B A, Zibordi G, Markham B, Bailey S, Schaaf C B, Ondrusek M, Greb S and Strait C M. 2017. Landsat 8 remote sensing reflectance (R_{is}) products: evaluations, intercomparisons, and enhancements. Remote Sensing of Environment, 190: 289-301 [DOI: 10.1016/j.rse.2016.12.030]
- Pahlevan N, Sheldon P, Peri F, Wei J W, Shang Z H, Sun Q S, Chen R F, Lee Z, Schaaf C B, Schott J R and Loveland T. 2016. Calibration/validation of Landsat-derived ocean colour products in Boston Harbour. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8: 1165-1168 [DOI: 10.5194/isprs-archives-XLI-B8-1165-2016]
- Pahlevan N, Smith B, Schalles J, Binding C, Cao Z G, Ma R H, Alikas K, Kangro K, Gurlin D, Hà N, Matsushita B, Moses W, Greb S, Lehmann M K, Ondrusek M, Oppelt N and Stumpf R. 2020. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: a machine-learning approach. Remote Sensing of Environment, 240: 111604 [DOI: 10.1016/j.rse.2019.111604]
- Ruddick K G, Voss K, Banks A C, Boss E, Castagna A, Frouin R, Hieronymi M, Jamet C, Johnson B C, Kuusk J, Lee Z, Ondrusek M, Vabson V and Vendt R. 2019. A review of protocols for fiducial reference measurements of downwelling irradiance for the validation of satellite remote sensing data over water. Remote Sensing, 11(15): 1742 [DOI: 10.3390/rs11151742]
- Ruddick K G, Voss K, Boss E, Castagna A, Frouin R, Gilerson A, Hieronymi M, Johnson B C, Kuusk J, Lee Z, Ondrusek M, Vabson V and Vendt R. 2019. A review of protocols for fiducial reference measurements of water-leaving radiance for validation of satellite remote-sensing data over water. Remote Sensing, 11(19): 2198 [DOI: 10.3390/rs11192198]

- Shang Z H, Lee Z, Dong Q and Wei J W. 2017. Self-shading associated with a skylight-blocked approach system for the measurement of water-leaving radiance and its correction. Applied Optics, 56 (25): 7033-7040 [DOI: 10.1364/AO.56.007033]
- Tanaka A, Sasaki H and Ishizaka J. 2006. Alternative measuring method for water-leaving radiance using a radiance sensor with a domed cover. Optics Express, 14(8): 3099-3105 [DOI: 10.1364/ OE.14.003099]
- Tang J W. 1999. The Simulation of Marine Optical Properties and Color Sensing Models. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (唐军武. 1999. 海洋光学特性模拟与遥感模型. 北京: 中国科学院遥感应用研究所)
- Tian L Q, Li S, Li Y, Sun Z H, Song Q J and Zhao J. 2020. A Floating Optical Buoy (FOBY) for direct measurement of water-leaving radiance based on the skylight-blocked approach (SBA): an experiment in Honghu Lake, China. Journal of Geophysical Research: Oceans, 125(10): e2020JC016322 [DOI: 10.1029/2020JC016322]
- Tian L Q, Li S, Sun X H, Tong R Q, Song Q J, Sun Z H and Li Y. 2020. Development of a novel floating water spectral measurement system based on skylight-blocked approach. Spectroscopy and Spectral Analysis, 40(9): 2756-2763 (田礼乔, 李森, 孙相晗, 童如清, 宋庆君, 孙兆华, 李勇. 2020. 基于天空光遮挡法的漂浮 式水体光谱测量系统研制. 光谱学与光谱分析, 40(9): 2756-2763) [DOI: 10.3964/j.issn.1000-0593 (202009-2756-08]
- Wang J W, Lee Z, Wei J W and Du K P. 2020. Atmospheric correction in coastal region using same-day observations of different sunsensor geometries with a revised POLYMER model. Optics Express, 28(18): 26953-26976 [DOI: 10.1364/OE.393968]
- Wei J W, Lee Z, Garcia R, Zoffoli L, Armstrong R A, Shang Z H, Sheldon P and Chen R F. 2018. An assessment of Landsat-8 atmospheric correction schemes and remote sensing reflectance products in coral reefs and coastal turbid waters. Remote Sensing of Environment, 215: 18-32 [DOI: 10.1016/j.rse.2018.05.033]
- Wei J W, Lee Z, Lewis M, Pahlevan N, Ondrusek M and Armstrong R.

2015. Radiance transmittance measured at the ocean surface. Optics Express, 23(9): 11826-11837 [DOI: 10.1364/OE.23.011826]

- Wei J W, Lee Z, Shang S L and Yu X L. 2019. Semianalytical derivation of phytoplankton, CDOM, and detritus absorption coefficients from the Landsat 8/OLI reflectance in coastal waters. Journal of Geophysical Research: Oceans, 124(6): 3682-3699 [DOI: 10.1029/2019JC015125]
- Wei J W, Wang M H, Lee Z, Ondrusek M, Zhang S and Ladner S. 2021. Experimental analysis of the measurement precision of spectral water-leaving radiance in different water types. Optics Express, 29(2): 2780-2797 [DOI: 10.1364/OE.413784]
- Yu X L, Lee Z, Shang Z H, Lin H and Lin G. 2021. A simple and robust shade correction scheme for remote sensing reflectance obtained by the skylight-blocked approach. Optics Express, 29(1): 470-486 [DOI: 10.1364/OE.412887]
- Zhang Q Y. 1985. Introduction to Meteorological Operation. Beijing: China Meteorological Press (张庆阳. 1985. 气象业务入门. 北 京: 气象出版社)
- Zibordi G, Holben B, Hooker S B, Mélin F, Berthon J F, Slutsker I, Giles D, Vandemark D, Feng H, Rutledge K, Schuster G and Al Mandoos A. 2006. A network for standardized ocean color validation measurements. Eos, Transactions American Geophysical Union, 87(30): 293-297 [DOI: 10.1029/2006EO300001]
- Zibordi G, Mélin F, Berthon J F, Holben B, Slutsker I, Giles D, D'Alimonte D, Vandemark D, Feng H, Schuster G, Fabbri B E, Kaitala S and Seppälä J. 2009. AERONET-OC: a network for the validation of ocean color primary products. Journal of Atmospheric and Oceanic Technology, 26(8): 1634-1651 [DOI: 10.1175/2009JTE-CHO654.1]
- Zoffoli M L, Lee Z, Ondrusek M, Lin J F, Kovach C, Wei J W and Lewis M. 2017. Estimation of transmittance of solar radiation in the visible domain based on remote sensing: evaluation of models using in situ data. Journal of Geophysical Research: Oceans, 122(11): 9176-9188 [DOI: 10.1002/2017JC013209]

Development and application of a portable floating optical buoy based on the skylight-blocked approach

TIAN Liqiao¹, LI Sen¹, SUN Xianghan¹, SUN Zhaohua², SONG Qingjun³

 State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing, Wuhan University, Wuhan 430079, China;
Easy Ocean Technology Ltd., Halifax B3H1N4, Canada;
National Satellite Ocean Application Service, Ministry of Natural Resource of the People's Republic of China, Beijing 100081, China

Abstract: Water-leaving radiance (L_w) or remote sensing reflectance (R_{rs}) is a fundamental parameter of water color remote sensing. It has been a long-standing and challenging goal to precisely measure L_w . Skylight-Blocked Approach (SBA), a novel approach for *in-situ* water

spectrum measurement, can observe L_w directly screening the impact of the skylight in above-water method. It is not necessary to fulfill complicated post-processing to derive L_w by using SBA, which makes it has great potential to be used in different types of water body. However, there is not an automatic portable instrument to obtain water spectrum through SBA until now. In this study, a portable floating optical buoy (FOBY-P) is developed and tested. FOBY-P has its advantages with a smaller self-shading and an easier deployment compared with previous versions of FOBY with a circular floating body. The in-situ measurements in the coast of China through FOBY-P were carried out from October to November 2018 to test the buoy system. The results showed that 1) The self-shading effect of the floating body on the $L_{\rm w}$ observation under a large solar zenith angle can be effectively avoided by the tripod design of FOBY-P. The errors caused by the selfshading were less than 5% for the R_{rs} of 400–700 nm when it was used in turbid water. And the self-shading effect was only 1%–3% used in clear water; 2) FOBY-P can keep the sensor stable in the different sea state levels. Its effective observation ratio (the tilt angle less than 5°) is over 98% in the 1st sea state. The sensor tilt angle would be greater and greater when the sea state becomes worse. However, the ratio can still reach approximately 50% for the 3rd and 4th sea state; 3) The derived results of FOBY-P are in good agreement with those of TriOS RAMSES sensors. The correlation coefficient r between the R_{rs} of FOBY-P and that of TriOS RAMSES is larger than 0.9, and the R_{rs} difference of them is less than 5% for 490-565 nm. The difference may be caused by the different processing procedures of the two systems with different approaches. The water-air interface correction processing may be one of the factors to cause the uncertainty of TriOS RAMSES observations with above-water method. The result shows that FOBY-P has some advantages in platform stability, ease of use, and measurement accuracy as an automatic water spectrum acquisition instrument based on SBA. In general, FOBY-P can satisfy the requirements of in-situ measurement of R_{rs} in optically complex coastal waters, even during moderate sea state to provide high-quality data. Furthermore, it is only the first version of FOBY-P and further optimization in the design and data processing would improve the performance of the instrument.

Key words: water color remote sensing, water spectrum, insitu measurement, the skylight-blocked approach, the Portable Floating Optical Buoy (FOBY-P)

Supported by National Key Research and Development Program of China (No. 2018YFB0504900, 2018YFB0504904); National Natural Science Foundation (No. 42071325, 42176183); Special Research Fund of State Key Laboratory of Information Engineering of Surveying, Mapping and Remote Sensing, LIESMARS Special Research Fund, Wuhan University "985 Program" and State key Laboratory Equipment Special Fund