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Concerns about phytoplankton bloom 
trends in global lakes

Lian Feng1,2 ✉, Yanhui Dai1,2, Xuejiao Hou1,2, Yang Xu1,2, Junguo Liu1,2 & Chunmiao Zheng1,2

arising from Ho, J. C. et al., Nature https://www.nature.com/articles/s41586-019-1648-7 
(2019)

Satellite remote sensing has been widely used to monitor the water 
quality of inland and coastal environments. Using satellite data from 
the Landsat 5 Thematic Mapper (L5TM), Ho et al.1 showed an increase in 
peak summertime bloom intensity in 68% of the 71 large lakes worldwide 
from 1982 to 2012. However, we question the veracity of their find-
ing for at least two reasons: (1) satellite-derived reflectance in a single 
near-infrared (NIR) band is not a reliable proxy for bloom strength, and 
(2) the infrequent satellite observations from L5TM make it difficult to 
draw statistically meaningful conclusions.

Ho et al.1 argued that the L5TM-estimated bloom intensity (BNIR) (see 
equation 2 in Ho et al.1), which is basically the reflectance in the NIR band, 
represents near-surface phytoplankton biomass. However, this argument 
became questionable when examining the spectral and chlorophyll a 
(Chla; a key indicator for phytoplankton biomass2) datasets collected 
from 15 lakes in China3 with varying eutrophic status (Chla ranging 
between 1.5 and 222.6 mg m−3; see Extended Data Fig. 1 and Supplemen-
tary Information). The complex relationship between spectral reflectance 
and Chla concentrations were also demonstrated by Spyrakos et al.4 using 
in situ data from around the world. Theoretically, the signal in the NIR 
band can be attributed to various water constituents in addition to algal 
blooms, and the contributions from suspended sediments and the pres-
ence of aquatic plants could be two of the most common perturbations in 
inland lakes. Ho et al.1 attempted to mask out sediment-rich waters with 
the use of hue but, as detailed later, our analysis suggests that the hue 
defined in ref. 1 does not accurately represent the colour of a water body.

Bloom strength tends to be substantially overestimated in 
sediment-rich waters. Examples from two of the lakes studied in Ho 
et al.1 (Fig. 1) show that the BNIR value of the high-turbidity, low-algae 
pixels was higher than that of the algae-present pixels within the same 
images. The examination of historical images (through both true-colour 
images and spectral features) shows that L5TM observations have cap-
tured sediment plumes in at least 58 (82%) of the 71 studied lakes, and 
these plumes could be incorrectly labelled as algal blooms owing to 
their high BNIR (see Extended Data Fig. 2). As supported by previous 
studies using data from both of the lakes studied in Ho et al.1 and from 
other global coastal/inland waters, the NIR reflectance in turbid waters 
can be substantially enhanced (see Extended Data Table 1). In inland 
lakes, episodic meteorological (for example, wind and precipitation) 
and hydrological (for example, riverine discharge) events can strongly 
influence sediment concentrations5, as exemplified by previous stud-
ies in Lake Erie6 and Lake Okeechobee7 in the USA and Hongze Lake8 
in China (three lakes examined in ref. 1). Therefore, the effect of water 
turbidity on BNIR should be evaluated carefully.

Similar to high sediment loads, the growth of aquatic vegetation 
can lead to overestimation of bloom severity. Pixels with high BNIR—in 

particular, vegetated waters rather than bloom areas—were also found 
within the same lakes (see Fig. 1a, b), where massive submerged plants 
have previously been reported9. The reason is that algal blooms and 
submerged vegetation share similarly high NIR reflectance (see 
Extended Data Fig. 3). Moreover, previous studies with datasets col-
lected across various global regions and plant species also showed 
markedly increased NIR reflectance due to the presence of submerged 
vegetation (see Extended Data Table 2). Indeed, a literature search 
revealed that of the 71 studied lakes, 41 (58%) contain abundant aquatic 
plants (see Extended Data Table 3) and their effects on BNIR should have 
been considered.

A hue-based mask (equations 3 and 4 in Ho et al.1) was designed 
to exclude potential contamination from sediments. However, this 
approach has failed in numerous cases (see Extended Data Fig. 2). This 
is mainly due to the inclusion of the atmospheric signals in the calcula-
tion of hue, that is, the hue was estimated using the top-of-atmosphere 
reflectance. Thus, this hue represents the colour of the combined 
signal of the atmosphere and the water. As shown in Extended Data 
Fig. 4, atmospheric molecular scattering alone could dominate the 
top-of-atmosphere reflectance for water bodies in the blue band10. 
The method (Fmask)11 used to determine lake surface area could lead 
to substantial underestimations of bloom severity. As the examples in 
Fig. 1c–e and Extended Data Fig. 5 show, severe bloom areas failed to 
pass the Fmask and were excluded in further BNIR calculations. Indeed, 
examination of the lakes studied in ref. 1 showed that most of the bloom 
scums were missed owing to the improper use of Fmask. This is because 
intense blooms often cause high normalized difference vegetation 
index (NDVI) values that can exceed the threshold used by Fmask (for 
example, NDVI < 0.1) to identify water pixels11.

Furthermore, the interannual dynamics of lacustrine algal blooms are 
difficult to characterize by infrequent L5TM observations12, and cloud 
coverage poses further challenges associated with optical satellite 
remote sensing. Statistically, the global mean daily cloud-free probabil-
ity is 33%, with seasonal differences of <5% (ref. 13). In other words, when 
L5TM overpasses 23 times in a year because of its 16-day revisit period, 
the annual mean number of cloud-free observations for a given location 
is only ~7.5 even without any other unfavourable observational condi-
tions (such as sun glint). As a compromise between data availability 
and result fidelity, Ho et al.1 excluded those years with fewer than three 
valid images in five summer months. We replotted a time series of algal 
bloom areas in Taihu Lake that was produced by Hu et al.12 (see Extended 
Data Fig. 6), which was obtained using daily observations from the 
Moderate-resolution Imaging Spectroradiometer (MODIS) satellite 
(revisit period of about one image per day) between 2000 and 2008. 
Of the >300 cloud-free daily MODIS images within the nine-year period, 
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only 24 shared the same overpassing dates as L5TM. Furthermore, 
detecting a bloom on the basis of remote-sensing imagery depends 
strongly on wind, given that the fraction of the satellite-observable 
surface bloom in relation to the total phytoplankton biomass is also a 
function of wind speed14,15. Owing to the unpredictable nature of cloud 
occurrence and wind speed, the temporal dynamics of bloom features 
were difficult to characterize with L5TM datasets.

Our results suggest that the use of L5TM-based BNIR by Ho et al.1 as 
a proxy for algal bloom strength is questionable for the majority of 
the lakes examined in their study. The incorrect use of a water mask 
algorithm (that is, Fmask) also leads to the omission of the most severe 
blooms with floating scum. The use of limited Landsat observations 
(often one cloud-free image every 1–2 months) is problematic for 
drawing statistically meaningful conclusions. Therefore, the trends 
in phytoplankton blooms for the 71 global lakes derived by Ho et al.1 
appear unrealistic.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The Landsat data can be obtained from the US Geological Survey at 
https://glovis.usg.gov. The in situ spectral and Chlα data used in this 
paper are available in the Supplementary Information.
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Extended Data Fig. 1 | Relationship between the surface reflectance in the 
NIR band (ρNIR) and Chla. The correlations for different Chla ranges 
(colour-coded) and individual lakes are non-significant (P > 0.05). The data are 
from in situ measurements collected from 15 lakes in China across waters with 

varying eutrophic status. ρNIR values are the equivalent L5TM NIR reflectances 
aggregated using in situ hyperspectral measurements and the L5TM spectral 
response function (see the aggregation method in Kalmen et al.96).
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Extended Data Fig. 2 | Examples showing the effects of high sediment loads 
on the bloom intensity (BNIR) calculations in eight of the lakes studied in  
Ho et al.1. The left panels of the paired images show the true-colour composites 
for L5TM images, and the right panels show the corresponding BNIR maps after 
applying the hue and Fmask masks. The sediment plumes (indicated by red 

arrows) with high BNIR values (~0.1) could still be classified as intense blooms 
with the hue mask defined in Ho et al.1. The examination of historical L5TM 
images show that sediment plumes could occur in at least 58 (82%) of the  
71 lakes studied in Ho et al.1.
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Extended Data Fig. 3 | Reflectance spectra of submerged vegetation.  
a, The spectral reflectances of two types (Ceratophyllum demersum and 
Myriophyllum verticillatum) of submerged vegetation collected from Taihu 
Lake in China (a shallow lake ~200 km away from Hongze Lake) on 24 October 
2019, using the PSR+3500 field-portable spectrometer manufactured by 
Spectral Evolution. Also plotted are the spectral reflectances of different 

blooms and the normalized spectral responses in the L5TM NIR band, which 
were obtained from extended data figure 7 in Ho et al.1. The spectral features of 
submerged vegetation, particularly the reflectance in the NIR band, are very 
similar to those of intense phytoplankton blooms. b, c, Photographs taken 
while conducting the in situ measurements.
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Extended Data Fig. 4 | Spectral features of different types of waters in L5TM 
images. a, b, The spectral data were obtained from the arrow-indicated pixels 
in Fig. 1 (a from Songkhla Lake and b from Hongze Lake). ρTOA is the 

top-of-atmosphere reflectance, ρr is the reflectance from molecular scattering 
(or Rayleigh scattering, estimated using the method in Gordon10) and ρrc is the 
difference between ρTOA and ρr.
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Extended Data Fig. 5 | Examples of pixels with intense blooms erroneously 
masked by Fmask in eight of the lakes studied in Ho et al.1. The left panels of 
the paired images show the true-colour composites for the L5TM images, and 
the right panels show the resultant separation of pixels determined using 

Fmask. Clearly, intense blooms (greenish in the red squares) have been 
classified as other classes instead of as water. The examination of the lakes 
studied in ref. 1 showed that most of the severe blooms with surface scum were 
missed owing to the improper use of Fmask.
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Extended Data Fig. 6 | Daily areas of algal bloom in Taihu Lake between 
2000 and 2008, determined using MODIS observations by Hu et al.12. Red 
points represent MODIS observations with the same overpassing dates as 
L5TM (that is, daily MODIS observations have concurrent L5TM images) and 

indicate the difficulty in characterizing long-term bloom dynamics. For 
example, whereas black dots show a clear increase in bloom area after 2005, 
such a trend is difficult to capture with the red dots.
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Extended Data Table 1 | Previous studies with in situ datasets that showed substantial effects of water turbidity (or total 
suspended sediments, TSS) on the reflectance of the water column in the NIR band

The bold text indicates studies of lakes that were also included in Ho et al.1. We note that this table does not include all related studies, because a complete list would be too long to present 
here. Data from refs. 7,16–41.
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Extended Data Table 2 | Previous studies with in situ datasets that showed that NIR reflectance could be substantially 
enhanced owing to the presence of submerged vegetation

This table does not include all related studies, because a complete list would be too long to present here. Data from refs. 42–59.



Nature | Vol 590 | 18 February 2021 | E47

Extended Data Table 3 | List of lakes studied in Ho et al.1 with abundant submerged vegetation identified

Data from refs. 9,60–95.
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Reply to: Concerns about phytoplankton 
bloom trends in global lakes

Jeff C. Ho1,2 ✉, Anna M. Michalak1 ✉ & Nima Pahlevan3,4

replying to L. Feng et al. Nature https://doi.org/10.1038/s41586-021-03254-3 (2021)

In Ho et al.1, we used three decades of high-resolution Landsat 5 (L5TM) 
satellite imagery to investigate long-term trends in intense summer-
time near-surface phytoplankton blooms for 71 large lakes globally to 
reveal a global exacerbation of bloom conditions. In the accompanying 
Comment2, Feng et al. question whether the implemented algorithm is 
“a reliable proxy for bloom strength” owing to the strong effects of sus-
pended sediments and aquatic vegetation, and whether “the infrequent 
satellite observations from L5TM make it difficult to draw statistically 
meaningful conclusions”. We agree that these are important considera-
tions, and they have been examined in detail. In Ho et al.3, the algorithm 
was found to outperform ten other candidate algorithms (see table 1 
in ref. 3). The 11 algorithms were evaluated using a total of ten metrics 
that assessed the algorithms’ ability to capture bloom magnitude, 
interannual variability and seasonal variability when evaluated against 
both in situ biovolume observations4 and remote-sensing imagery from 
MERIS and MODIS5. In Ho et al.1, we further evaluated the algorithm by 
assessing its ability to reproduce previously reported spatial gradients 
across 48 region pairs in 22 lakes (see section ‘Validation of well known 
spatial gradients in bloom intensity’ and supplementary table 2 in ref. 
1). In addition, to evaluate whether trends in the abundance of con-
stituents such as suspended sediments or aquatic vegetation could be 
misinterpreted as trends in bloom intensity, we assessed the algorithm’s 
ability to capture both the direction and the timing of changes in bloom 
intensity for seven lakes for which such information was available in the 
literature (see section ‘Evaluation of bloom intensity time series and 
trends’ in ref. 1). In all analyses, the algorithm was shown to meaningfully 
and accurately represent long-term trends in bloom intensity for lakes 
for which such information was available. Although we recognize that 
modern remote-sensing instruments6 will be able to track lacustrine 
algal blooms even more accurately in the future, we maintain that the 
analysis presented in Ho et al.1 using L5TM represents the best possible 
analysis of global phytoplankton bloom intensity over the historical 
period going back to the 1980s.

In elaborating on the above two topics, Feng et al.2 present meas-
urements of near-infrared (NIR) reflectance versus chlorophyll a 
co-mingled across 15 unidentified lakes in China (see extended data 
figure 1 in ref. 2), whereas in Ho et al.1 we explicitly state that while the 
approach implemented therein “has proven effective in identifying the 
extent of near-surface intense phytoplankton blooms, we emphasize 
that the retrieval of concentrations of specific bloom severity metrics 
(for example, chlorophyll a) is beyond the scope of this study”. In Ho 
et al.1 we also explain that the implemented approach was designed 
specifically to eliminate the need to compare absolute magnitudes 
across lakes—a barrier that has limited cross-lake syntheses in the past. 
For these two reasons, the data presented by Feng et al.2 are not directly 
relevant to the arguments presented in Ho et al.1.

Feng et al.2 then elaborate that “the effect of water turbidity on BNIR 
should be evaluated carefully”. We agree, and this was indeed done in 
Ho et al.1,3. As stated above, the algorithm was validated across over two 
dozen lakes, including an extensive discussion of suspended sediments 
in Ho et al.3. In figure 1 of ref. 2 (and extended data figures 2, 4), Feng 
et al. use true-colour composite examples from lakes in Ho et al.1 to 
argue that sediments can be a confounding factor for the efficacy of the 
algorithm from Ho et al.1. However, the simple occurrence of sediment 
plumes does not imply that long-term trends based on the algorithm 
are incorrect. Indeed, several of the lakes included in extended data 
table 1 of Feng et al.2 (for example, Lakes Balaton, Winnipeg and Erie) 
were included in the algorithm evaluation in Ho et al.1 (see figure 4a and 
extended data figures 9a, 9c in ref. 1), and their multi-decadal bloom 
intensity trends were successfully reproduced by the algorithm. Fur-
thermore, visual interpretation of true-colour imagery alone can be 
misleading as a method for the delineation of blooms, sediment and 
submerged vegetation. Indeed, past studies that compared inferences 
from qualitative observations and remote sensing yielded ambigu-
ous results7, which is part of a broader challenge in relating in situ and 
remote-sensing observations8.

Feng et al.2 then argue that “the growth of aquatic vegetation can lead 
to overestimation of bloom severity”. Overall, in optically deep waters 
in the NIR region, it is very unlikely that the water-leaving signal carries 
any information pertaining to submerged vegetation, owing to strong 
absorption by pure water9. The key question, however, is not whether 
submerged vegetation could in some cases affect NIR reflectance 
(extended data table 2 and extended data figure 3 in ref. 2) or whether 
some of the examined lakes have submerged vegetation (extended 
data table 3 in ref. 2), but rather whether trends in the abundance of 
submerged vegetation could affect the reported trends in bloom inten-
sity. As described above, the algorithm was successfully validated in 
lakes with well documented trends in bloom intensity, including some 
of those with submerged vegetation listed in extended data table 3 of 
ref. 2. More broadly, we did not find that the observed trends in bloom 
intensity tracked documented trends in submerged vegetation for lakes 
for which such information is available. For example, Havens et al.10 
(see figure 5 therein) report the annual spatial extent of submerged 
aquatic vegetation for Lake Okeechobee for 2002–2015. The trends 
in submerged vegetation do not track the observed historical trend in 
bloom intensity in Ho et al.1 (see figure 4f therein). There is therefore 
no indication that trends in submerged aquatic vegetation influenced 
estimates of long-term trends in bloom intensity.

Feng et al.2 then raise concerns about the hue mask. We again refer 
to the above summary of how the algorithm was validated across over 
two dozen lakes, including the discussion about suspended sediments 
and turbidity. We agree that surface reflectance data could be used 
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in future work to further refine the analysis, but such data were not 
available at the time of the analysis and are not expected to alter the 
fundamental conclusions of the work.

Next, Feng et al.2 comment on the use of the Fmask algorithm for 
cloud clearing and for identifying water pixels. Extended data figure 
5 of ref. 2 shows examples of cases where the bloom intensity may be so 
high as to lead the Fmask algorithm to erroneously identify portions of 
open water as land. Again taking Lake Okeechobee (shown in extended 
data figure 5 of ref. 2) as an example, we examined every scene over the 
period of record used in Ho et al.1 and identified the frequency with 
which pixels in open water were erroneously identified as land using 
the Fmask algorithm. We confirmed that this can indeed happen in 
isolated cases, but this is a rare occurrence. Figure 1 shows the fraction 
of cases, across the 242 scene composites obtained between 1984 and 
2012 for the months of June to October, for which a given 30-m pixel 
within the lake is identified as land. For the open-water portions of the 
lake, this fraction is below 3%. This illustrates that the Fmask algorithm 
performs as designed, with variability in the lake boundary and in the 
near-shore regions being filtered out, whereas the open water where 
bloom activity occurs is included in almost all composites. Finally, 
because in Ho et al.1 we normalize the bloom time series for each lake, 
the focus is on long-term relative trends in bloom severity, rather than 
on pixel-by-pixel classification for a particular scene.

Finally, Feng et al.2 raise the issue of frequency of observations and 
cloud cover, and state that because “the global mean daily cloud-free 
probability is 33%”, only one-third of L5TM overpasses are usable. Set-
ting aside the issue that sun glint, one of the “unfavourable observa-
tional conditions” resulting in unusable images, as claimed in ref. 2, is 
not possible with L5TM data owing to viewing angles below 7.5°, the 
percentage quoted by Feng et al.2 is in no way representative of the data 
availability for ref. 1. On average, 75% of the area in the L5TM images 
over the studied lakes over the study period was cloud-free (Fig. 2a). 
The vast underestimate of cloud-free area in Feng et al.2 is likely due 

to the fact that it is based on global cloud cover, which includes high 
cloud cover over oceans11, does not account for greater cloud cover 
seasonality over land11 and is calculated from a cloud cover algorithm 
designed specifically to designate more pixels as cloud versus clear 
sky in order to be conservative12.

Extended data figure 6 in ref. 2 also presents MODIS data for Taihu 
Lake13 (a lake not included in Ho et al.1) for cloud-free days based on an 
earlier study13, and identify those days with coincident L5TM overpasses 
to argue that L5TM observations are too sparse to track trends. In Ho 
et al.1, we selected lakes on the basis of their inclusion in previous studies 
that leveraged remote sensing by satellites14, thus reducing the likeli-
hood that persistent cloudiness obscured the images. Furthermore, 
we used the Fmask algorithm (https://code.earthengine.google.com/
dataset/LANDSAT/LT5_L1T_TOA_FMASK) to objectively identify cloud 
and cloud shadow pixels (Fig. 2a), whereas the study13 referenced in 
extended data figure 6 of ref. 2 subjectively “visually examined” images 
and reported that only images “with minimal cloud cover were chosen 
and processed”13. Also, unlike ref. 13, we did not exclude all composites 
with any cloud cover, but only those in which the observed lake surface 
area was less than 80% of the maximum, or less than the mean minus 
one standard deviation of the whole surface area of the lake for the time 
series, whichever was lower. Overall, we were able to use an average 
of 79% of L5TM images for the lakes included in the study (Fig. 2b). If 
Lake Taihu had been included in the study, we would have retained 71% 
of the L5TM images over the study period for that lake (Fig. 2b), or an 
average of 6.4 images per June–October period, rather than the aver-
age 1.4 images per June–October period implied by the red symbols in 
extended data figure 6 of ref. 2.

Overall, although we appreciate the careful analysis presented in 
Feng et al.2, none of the issues presented therein had any substantive 
impact on the analysis and conclusions in Ho et al.1. Specifically, we 
saw no evidence that the presence of suspended sediments or aquatic 

Fig. 1 | Detections of ‘land’ from Fmask over open water are rare. The map 
shows the fraction of detections of ‘land’ from Fmask over Lake Okeechobee 
from 1984 to 2012 for the months of June to October (242 image composites). 
Image values are only valid within the Lake polygon boundary. Basemap data 
from Google15, TerraMetrics Inc. (www.terrametrics.com).

a

25 50 75 100

b

25 50 75 100

Cloud-free pixels in composite images (%)

Usable composite images (%)

Fig. 2 | The average cloud-free area is large in the L5TM images used in Ho 
et al.1 study lakes, and the percentage of usable images is therefore also 
high. a, For each 16-day composite image created for each lake in Ho et al.1, the 
cloud-free percentage of the image was calculated as one minus the number of 
cloud pixels divided by the number of image pixels. Then, for each lake, the 
cloud-free percentages were averaged across all images to yield an average 
cloud-free percentage for each lake, presented as a boxplot across the  
71 studied lakes. The mean and median across the lakes are 77% and 76% 
cloud-free pixels, respectively. b, For each lake, the percentage of usable 
composite images was determined by removing individual images with less 
than 80% cloud-free pixels, or less than the mean observed surface area minus 
one standard deviation1. The percentage of usable images is presented as a 
boxplot across the 71 studied lakes. The mean and median across lakes are both 
79% of the composites retained. The red symbols indicate the respective values 
for Taihu Lake, which was not among the 71 studied lakes. In the boxplots, the 
boxes indicate the interquartile range (IQR) and the whiskers denote the 
largest value <1.5×IQR above the third quartile and the smallest value >1.5×IQR 
below the first quartile. The circles indicate outliers beyond the whisker values.
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Matters arising
vegetation affected the long-term trends estimated for the examined 
lakes, and cloud cover did not reduce data availability to a degree that 
affected the ability to estimate long-term trends.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data availability is as outlined in ref. 1.
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