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A B S T R A C T

The eutrophication problems in lakes on the Yangtze Plain of China have attracted global concern. However, a
comprehensive assessment of the eutrophication status and its evolution is still lacking for these regional lakes,
mostly because of technical difficulties and/or insufficient data to cover the large region. Our study attempts to
fill this knowledge gap by using the entire archive of remote sensing images from two satellite ocean color
missions (MEdium Resolution Imaging Spectrometer, or MERIS (2003−2011), and Ocean and Land Color
Instrument, or OLCI (2017–2018)), together with in situ data on remote sensing reflectance and chlorophyll-a
(Chla) concentrations across various lakes on the Yangtze Plain. A machine learning-based piecewise Chla al-
gorithm was developed in this study, with special considerations to improve algorithm performance under lower
Chla conditions. Remotely sensed Chla and algal bloom areas were then used to classify the eutrophication status
of 50 large lakes on the Yangtze Plain, and the frequent satellite observations enabled us to estimate the
probability of eutrophication occurrence (PEO) for each examined lake. The long-term mean Chla ranged from
17.58 mg m−3 to 43.86 mg m−3 on the Yangtze Plain, and severe floating algal blooms were found in 7 lakes. All
50 lakes had high climatological PEO values (50%) during the study period, indicating a generally high prob-
ability of eutrophication in lakes on the Yangtze Plain. However, 21 out of 51 lakes exhibited statistically sig-
nificant (p < .05) decreasing trends in PEO during the observation period, suggesting an overall improvement
in the water quality of lakes on the Yangtze Plain in recent years. The methods developed here are expected to
contribute to real-time monitoring of drinking water safety for local regions, and the long-term results provide
valuable baseline information for future lake conservation and restoration efforts.

1. Introduction

Lakes represent one of the most important components of the Earth's
surface system, which provides us with a drinking water supply and
provides critical ecological functions, such as irrigation, flood storage,
fisheries, navigation, and recreation (Feng et al., 2013; Fu et al., 2003;
Hou et al., 2017; Wang et al., 2014). This importance is particularly
true for the Yangtze Plain of China, which holds more than 100 large
lakes (area > 10 km2), comprising ~30% of the total lake surface area
in China. With the rapid population increase (with an increasing rate of
0.96% y−1 from 1990 to 2014) and economic growth (with a growth
rate of 7.8% y−1 from 2005 to 2015) in the Yangtze basin (Luo et al.,
2019), intensive anthropogenic activities bring unprecedented

pressures to the regional environment, resulting in a series of en-
vironmental and ecological crises, including water quality deterioration
(Feng et al., 2019; Hou et al., 2017), fishery reduction (Gong et al.,
2005; Wang et al., 2014) and biodiversity loss (Fang et al., 2006; Fu
et al., 2003; Huang and Li, 2016); these crises pose great threats to
sustainable socioeconomic development in this region.

According to national lake surveys conducted from 2007 to 2011,
severe eutrophication problems were identified in most of the lakes on
the Yangtze Plain (Le et al., 2010; Xiao et al., 2007), as demonstrated by
the higher chlorophyll-a (Chla) and nutrient concentrations (Xiao et al.,
2007; Zhang et al., 2007; Zhang et al., 2008b); this problem attracted
massive attention, and considerable efforts have been made on lacus-
trine water quality in these surveys (Ma et al., 2010a; Shi et al., 2007;
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Zhang and Mei, 1996). The observed water quality deterioration was
primarily attributed to the continuous increase in the input of pollu-
tants into the lakes (Yang et al., 2010b), despite the considerable efforts
that were made to control point and nonpoint sources of pollutions in
the lakes' drainage basins (Wang et al., 2016).

Although remote sensing observations have been extensively used
to examine the lake size dynamics (Ma et al., 2010b) during national
lake surveys, water quality data have still been primarily obtained with
traditional field sampling measurements (Yang et al., 2010b). Field
sampling approach may be sufficient for small lakes with relative stable
aquatic environments, while they often suffer from limitations related
to the spatial and temporal representativeness of the data, preventing a
comprehensive assessment of the changing water quality patterns over
large areas and long periods. For example, due to complex optical
variations across parts of a large lake (e.g., Poyang Lake and Dongting
Lake), discrete point-level water samples may not well represent the
true conditions of the entire lake. Furthermore, field measurements in
different lakes may have been collected in different seasons or even
different years, and rapid temporal variations prohibit a direct com-
parison of water quality between different lakes.

Due to their apparent advantages in large-scale research and their
high frequency of observations, remote sensing techniques are in-
creasingly being used to monitor the water quality of lakes on the
Yangtze Plain in recent decades. Due to strong reflective satellite signals
for highly turbid lakes on the Yangtze Plain (Feng et al., 2014a; Hou
et al., 2017; Shi et al., 2015; Zhang et al., 2008a), the water clarity-
related parameters (e.g., the total suspended sediments (TSS), water
turbidity, and Secchi disk depth (Feng et al., 2019; Hou et al., 2017; Shi
et al., 2015; Wang et al., 2011; Wu et al., 2008) of individual lakes or
basin-scale lake clusters were quantified based on satellite observations;
this information served as a first-order description of water quality and
represented the visual perception of humans. However, these para-
meters provide limited information on the eutrophication status of
these lakes.

Eutrophication-oriented studies mainly focus on tracing cyano-
bacterial blooms and attempt to assess the eutrophication status of a
limited number of lakes on the Yangtze Plain. For example, two decades
of Landsat observations were used to reconstruct the historical changes
in the algal blooms in Taihu Lake (Duan et al., 2009), while more de-
tailed descriptions of the short-term bloom dynamics were presented
with the more frequent Moderate Resolution Imaging Spectro-
radiometer (MODIS) observations (Hu et al., 2010). Algal bloom areas
and their spatiotemporal changes in Chaohu Lake have been mapped
with similar methods as those used for Taihu Lake (Li et al., 2017;
Zhang et al., 2016; Zhang et al., 2015). Moreover, efforts have been
made to quantitatively retrieve the Chla or even the phycocyanin pig-
ment concentrations based on in situ measurements and remote sensing
images, and the developed algorithms ranged from empirical (Feng
et al., 2014b; Garcia et al., 2006; Le et al., 2011; Min et al., 2017; Neil
et al., 2019; Qi et al., 2014a; Song et al., 2013; Sun et al., 2009) to
quasi-analytical (Duan et al., 2012; Garcia et al., 2006; Gitelson et al.,
2008; Jiang et al., 2020; Le et al., 2009; Liu et al., 2020; Liu et al., 2018)
approaches. Unfortunately, these previous bloom classification and
Chla-retrieval studies generally focused on individual lakes, prohibiting
a complete assessment of the eutrophication status of basin-scale lake
groups. Indeed, the absence of such an assessment could be associated
with the following two challenges:

1. The remote sensing data used in previous studies suffered from one
or several limitations related to the spectral, radiometric and spatial
resolutions. For example, with broad bands (band width of tens or
even>100 nm), the instruments (e.g., Landsat) or bands (high-re-
solution bands for MODIS and Visible Infrared Imaging Radiometer
Suite (VIIRS)) designed for land applications may not be able to
capture the narrow absorption/fluorescence and backscattering
features of the Chla pigments (Smith et al., 2018). Likewise, these

datasets have a relatively low signal-to-noise (SNR) ratio, and the
smaller absorption/fluorescence and backscattering signals from
Chla are difficult to resolve due to the overwhelming reflection
caused by the high TSS concentrations in these lakes. In contrast,
although they have high SNRs, typical ocean color satellite missions
or bands (e.g., SeaWiFS and MODIS/VIIRS ocean bands) have spatial
resolutions that are too coarse (1 km) to monitor inland waters
(Feng et al., 2014b). Therefore, narrow bands with sufficient sen-
sitivity are required to accurately retrieve Chla concentrations from
turbid waters.

2. A lack of in situ data covering different water types (or optical
properties) are available to develop a generic algorithm for the lakes
across the entire Yangtze Plain. Previous remote sensing Chla al-
gorithms were based on field-measured data from one or two lakes,
and the developed algorithm may not be applicable in other lakes
due to the potential differences in water optical properties. Although
numerous field investigations have been conducted by different re-
search groups and organizations in China, the level of data sharing
between different entries is limited due to the absence of an effective
mechanism, the possible differences in data measuring methods and
the differences in measurement consistency.

Fortunately, the two satellite missions launched by the European
Space Agency (ESA), the Medium Resolution Imaging Spectrometer
(MERIS, 2002–2011) and Ocean and Land Color Instrument (OLCI,
2017-present), have unparalleled advantages in terms of spectral re-
solution (15 bands for MERIS and 21 bands for OLCI) and band width
(~10 nm) over the other ocean color measurements; thus, these ap-
proaches can be used to detect the absorption features of Chla, parti-
cularly the absorption peak at ~665 nm and the Chla fluorescence at
~680 nm (Liu et al., 2020; Odermatt et al., 2010; Pahlevan et al., 2020;
Qi et al., 2015; Soomets et al., 2020; Xue et al., 2019). Moreover, these
two instruments provide 300-m full resolution observations, which
make them useful for relatively small inland water bodies. Therefore,
the complete datasets from these two missions were used in the current
study to fill the current knowledge gap related to eutrophication and its
long-term dynamics in the lakes on the Yangtze Plain with the following
specific objectives:

1. Develop a generic Chla remote sensing algorithm that is applicable
for lakes with various conditions on the Yangtze Plain and propose a
practical approach and framework to quantify the eutrophication
status of lakes using satellite-derived Chla and algal bloom areas;

2. Demonstrate the temporal and spatial dynamics of Chla and algal
bloom areas for 50 large lakes on the Yangtze Plain using MERIS and
OLCI imagery and assess the changes in the eutrophication condi-
tions during the observational periods.

2. Study area and datasets

2.1. Study area

The Yangtze Plain is located in the middle and lower basin of the
Yangtze River and has an area of ~7850,000 km2 across five provinces
and one municipality (Shanghai) (Hou et al., 2017; Wang et al., 2014).
Lakes and ponds in this plain (elevation<50 m above sea level) pro-
vide water for human consumption and agricultural/industrial devel-
opment (Duan et al., 2014; Duan et al., 2012; Qin et al., 2007; Qin
et al., 2010; Wang et al., 2005); additionally, they have vital roles in
regulating local ecosystems and climate change (Feng et al., 2012a;
Guan et al., 2018; Hou et al., 2017; Nakayama and Shankman, 2013;
Tang et al., 2016). The Yangtze Plain lakes were generally formed by
the sea level rise during the postglacial period when the water level of
the Yangtze River elevated to inundate the lowland regions, resulting in
shallow lakes (a mean water depth of< 5 m) (Yang et al., 2008).
Furthermore, the ecosystems of the lakes have been disturbed by
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extensive human activities (Du et al., 2011; Fang et al., 2005; Feng
et al., 2012b; Ma et al., 2010a) and accelerated urbanization (Wang
et al., 2014; Zhao et al., 2005). These lakes suffer from a range of severe
environmental issues, including reduced inundation (Feng et al., 2012a;
Feng et al., 2013; Yin et al., 2007), water quality decline (Feng et al.,
2019; Hou et al., 2017), and wetland degradation (Feng et al., 2016;
Han et al., 2015).

As a result of severe water eutrophication, cyanobacterial blooms
frequently occur in several lakes on the Yangtze Plain. Most recently, in
the summer of 2007, a severe algal bloom occurred in Taihu Lake and
was extensively covered by the media; this severe algal bloom produced
a drinking water crisis for two million citizens in Wuxi City, Jiangsu
Province (Duan et al., 2014; Duan et al., 2009; Qin et al., 2007). Si-
milarly, frequent cyanobacterial blooms occurred in Chaohu Lake,
posing a serious threat to the drinking water resources of Heifei City,
which has a population of ~8 million (Xie et al., 2010). Additionally,
water eutrophication has been found in other lakes on the Yangtze Plain
during national lake surveys (Le et al., 2010; Xiao et al., 2007), in-
dicating that eutrophication has become one of the main potential en-
vironmental crises for lakes on the Yangtze Plain. As the focal lakes of
water eutrophication throughout the Yangtze Plain, many attempts
have been made to quantify the Chla concentration and eutrophication
status distributions for Chaohu and Taihu lakes (Hu et al., 2010; Qi
et al., 2014b; Qin et al., 2007; Sun et al., 2009; Tao et al., 2015; Zhang
et al., 2015; Zhang et al., 2016). However, the water eutrophication
status and algal bloom status of most other lakes are still unknown. The
eutrophication conditions of 50 large lakes in the Yangtze Plain were
studies here, and the basic information of each lake is shown in Table 1.

2.2. Satellite data and preprocessing

The entire mission (2003–2011) of the MERIS satellite images
covering the study region was obtained from the NASA Goddard Space
Flight Center (https://oceancolor.gsfc.nasa.gov/), and the OLCI images
between 2017 and 2018 were downloaded from the Copernicus Data
and Information Access Service. Full resolution data (300 m) were used
from both instruments, and in total, 1672 and 552 images were ob-
tained from MERIS and OLCI, respectively. All MERIS and OLCI images
were processed with SeaDAS software (version 7.4) to produce the
Rayleigh-corrected reflectance (Rrc). The calculation of Rrc for each
wavelength (λ) is expressed as follows:

= × −′R πL F θ R/( cos )rc λ t λ r λ, , 0 0 , (1)

where F0 is the extraterrestrial solar irradiance, Rr,λ is the reflectance
from Rayleigh (molecular) scattering, Lt is the gaseous absorption-cor-
rected sensor radiance, and θ0 is the solar zenith angle. Although this
method only partially removes the atmospheric radiance, Rrc has been
considered to be effective in various aquatic environmental monitoring
studies, and particularly for algal bloom detection (Hu, 2009; Hu et al.,
2010).

To further quantitatively retrieve the Chla concentrations, the im-
pacts of aerosol scattering in Rrc should be removed. Although it is more
straightforward to apply the SeaDAS-embedded atmospheric correction
approaches over the MERIS and OLCI images (Gordon and Wang,
1994), the resulting remote sensing reflectance (Rrs) spectra were pro-
blematic due to their unrealistic spectral shapes (see Fig. S1). Instead,
the POLYMER (i.e., a polynomial-based approach originally designed
for MERIS) atmospheric algorithm was employed in this study to gen-
erate the full atmospherically corrected Rrs (Steinmetz et al., 2011;
Steinmetz et al., 2016), where the resulting Rrs retrievals showed much
better agreement with the in situ data than the datasets obtained using
SeaDAS-embedded correction method based on spectral shapes and
reflectance magnitudes. The POLYMER algorithm simulates atmo-
spheric contributions of satellite signals using a spectral optimization
scheme, where optical parameters are iteratively fed into bio-optical
models, resulting in optimal Rrs values and aerosol contributions.

Previous validations of the POLYMER algorithm have also demon-
strated satisfactory performance in terms of producing accurate Rrs

values for MERIS, OLCI and other ocean color instruments (Müller
et al., 2015; Mograne et al., 2019; Pereira-Sandoval et al., 2019; Qin
et al., 2017; Steinmetz and Ramon, 2018; Warren et al., 2019; Zhang
et al., 2018). POLYMER also outperforms the NASA standard atmo-
spheric correction method in data coverage due to its higher tolerance
to unfavorable conditions (e.g., sun glint and thin clouds) (Zhang et al.,
2018). Note that during POLYMER atmospheric correction process, the
normalized sun glint coefficient (Lgn, sr−1) for each pixel was also es-
timated using the method proposed by Cox and Munk (1954) and pixels
with Lgn > 0.04 (Zhang et al., 2018) were considered sun glint con-
taminated and discarded in further analysis. All satellite images were
then re-projected into the same cylindrical equidistance (rectangular)
projection to further facilitate the generation and analysis of the Chla
products. Although the OLCI instrument provides more spectral bands
than MERIS, only the common wavelengths (i.e., 620, 665, 681, 709
and 754 nm) of the two instruments were used in this study to derive
the Chla concentrations of the Yangtze Plain lakes.

2.2.1. In situ datasets
Field measurements of Chla concentrations and Rrs spectra were

collected from 11 large lakes (Fig. 1) on the Yangtze Plain. These field
surveys were conducted across four different seasons from 2005 to
2018, and the data represent various water conditions. The hyper-
spectral Rrs spectra were measured with a PSR + 3500 field portable
spectroradiometer (Spectral Evolution Inc. (SEI)), which has a spectral
range of 350–2500 nm. The NASA-recommended ocean optics protocol
(Mobley, 1999) was followed when conducting above-water Rrs mea-
surements, and the upward radiance (Lu), download sky radiance (Lsky)
and radiance from a standard reference plaque (Lpla) were measured.
These hyperspectral radiance measurements were converted into
MERIS/OLCI-equivalent bands using their relative spectral response
functions. Then, Rrs for each MERIS/OLCI band (Rrs, λ) was calculated as
follows:

= − ×R ρ L ρ L L( )/πrs λ f λ u λ f λ sky λ pla λ, , , , , , (2)

where ρpla is the reflectance of the standard reference plaque (~10%),
and ρf is the Fresnel reflection of the water surface, which was assumed
to be 0.022 for a flat-water surface (Mobley et al., 2003). Note that,
although the Fresnel reflection wavelength is also a function of wave-
length, the application of a spectral optimization method to account for
such impacts (Lee et al., 2010) resulted in incorrect spectral shapes and
magnitudes. As such, the constant (0.022) was used for in situ Rrs cal-
culations and wavelength-dependent values were not considered.

Samples were collected at the water surface (depth of< 0.5 m)
wherever the Rrs spectrum was measured. The water samples were fil-
tered through 0.45-μm Whatman cellulose acetate membrane filters;
filters were soaked with 90% acetone and then stored at 0° for 24 h. An
RF-5301 fluorescent spectrophotometer (Shimadzu, Kyoto, Japan) was
calibrated with Chla standards and used to measure the Chla con-
centration (mg m−3). Digital photos were taken for all sampled sites to
record whether algal blooms or submerged vegetation occurred in these
locations. Water samples with severe cyanobacterial blooms (i.e., ap-
parent surface scums) or aquatic vegetation were excluded for Chla
algorithm development, and a total of 604 pairs of in situ Rrs spectra
and Chla concentrations were used to derive the Chla algorithm. Field-
measured Rrs spectra and Chla concentrations were plotted in Fig. 2a.
Furthermore, the corresponding total suspended sediments (TSS) were
also shown in Fig. 2b and Table 2.

2.2.2. Ancillary datasets
Meteorological data, including precipitation and temperature, were

obtained to examine the potential impacts of natural drivers on the
long-term change patterns of Chla. The monthly precipitation data from
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the Tropical Rainfall Measuring Mission (TRMM 3B43) were down-
loaded from the NASA Goddard Distributed Active Archive Center
(DAAC) (http://trmm.gsfc.nasa.gov/) with a spatial resolution of
0.25° × 0.25° (~25 km at the equator). The precipitation of a lake was
represented as the mean precipitation within its drainage basin.
Temperature data were obtained from the China Meteorological Data
Sharing Service System (http://data.cma.gov), and the data collected at
the gauge station closest to each lake were used to represent its tem-
perature conditions.

Apart from these natural drivers, nutrient loads, mostly from human
perturbations, may be major contributors to phytoplankton growth
(Marra et al., 1990) and Chla abundance in the water column. The
nutrient inputs from three major sources, including chemical fertilizer
consumption from surrounding counties, industrial sewage from lake-
adjacent cities and livestock excrement from the lake drainage basin,

were compiled to study the influence of human activities on lake eu-
trophication. Fertilizer consumption was obtained from the provincial
statistical yearbook (Feng et al., 2019), and industrial sewage for each
lake was obtained from the China City Statistical Yearbook (Feng et al.,
2019; Liu et al., 2013). The amount of livestock excrement in the lake
drainage (Q, in kg) basin was estimated as the total excreta from the
major feeding animals, including cow, sheep, pig, fowl, and rabbit, in
the middle and lower reaches of the Yangtze River basin, which can be
expressed as:

∑=
=

Q c N T
i

n

i i i
1 (3)

where ci is the excretory coefficient measuring the amount of excrement
per day, which varies between different types of livestock and was
adopted from Wei et al. (2016); Ni is the number of livestock raised in

Table 1
General information (names, locations, mean areas), and the satellite-derived climatological mean Chla and PEO of the 50 examined lakes in this study. Also listed
are the correlation coefficients between long-term PEO and concurrent conditions of potential driving factors (temperature, precipitation, chemical fertilizer, in-
dustrial wastewater and biological excrement), and the numbers in the parenthesis are the relative contributions (in percentage) of these factors to the interannual
changes in the PEO (estimated using a multiple general linear model regression). Statistically significant (i.e., p < .05) correlations and contributions are annotated
with “*”.

ID Name Lon Lat Area (km2) Chla (mg/m3) PEO (%) Fertilizer Excrement Wastewater Temperature Precipitation

L01 Beimin 111.87 29.71 14.25 30.70 88.52 −0.18 (3.40) −0.19 (0.45) 0.38 (14.79) 0.05 (19.28) −0.60* (16.71)
L02 Xihu 111.94 29.36 40.00 37.42 91.07 0.46 (21.50) 0.27 (8.55) −0.18 (5.06) 0.73* (39.17*) −0.34 (4.87)
L03 Shanpo 112.03 29.43 18.83 26.54 89.12 −0.29 (8.42) −0.49 (25.14) 0.58* (19.60) 0.32 (2.84) −0.61* (22.12)
L04 Changhu 112.4 30.44 114.03 29.79 87.01 0.38 (14.51) 0.29 (1.74) 0.22 (0.05) 0.13 (4.19) −0.21 (33.17)
L05 Datong 112.51 29.21 83.10 20.57 75.43 −0.50 (24.72) −0.57* (13.37) 0.86* (35.68*) −0.33 (10.72) −0.03 (0.24)
L06 Donghu (CD) 112.64 29.37 24.85 29.86 89.48 −0.26 (6.95) −0.16 (4.26) 0.09 (0.36) −0.34 (12.19) 0.27 (0.26)
L07 Dongting 113.12 29.34 2614.36 22.79 69.73 0.05 (0.23) −0.15 (6.51) 0.16 (7.19) −0.28 (0.30) −0.21 (12.77)
L08 Honghu 113.34 29.86 340.05 32.13 89.84 0.25 (6.38) 0.14 (4.02) −0.07 (5.43) −0.25 (24.96) −0.08 (4.98)
L09 Longsai 113.51 30.84 9.34 29.46 87.64 0.55* (30.16) −0.10 (22.82) 0.13 (2.28) 0.02 (1.58) −0.57* (7.06)
L10 Huanggai 113.55 29.7 59.47 34.91 94.81 −0.72* (52.17*) −0.57* (0.14) 0.46 (23.06) −0.22 (8.22) −0.08 (0.28)
L11 Wuhu (XT) 113.8 30.18 32.93 32.56 86.50 −0.35 (12.36) −0.08 (4.71) 0.06 (42.69) 0.21 (2.20) −0.03 (0.80)
L12 Yezhu 114.07 30.86 25.88 29.62 92.03 −0.13 (1.64) −0.43 (18.89) 0.52 (12.18) 0.66* (13.30) −0.40 (13.58)
L13 Xiliang 114.08 29.95 28.58 35.46 90.53 −0.21 (4.29) −0.60* (54.28*) 0.92* (30.88*) 0.58* (1.78) −0.46 (4.74)
L14 Luhu 114.2 30.22 47.33 25.80 83.38 0.83* (68.50*) 0.66* (1.79) 0.20 (17.40) 0.24 (0.21) −0.68* (1.80)
L15 Futou 114.23 30.02 141.22 28.86 87.58 0.79* (62.67*) 0.34 (28.02*) 0.29 (1.55) 0.27 (0.00) −0.32 (0.00)
L16 Houhu 114.28 30.74 12.61 28.60 85.61 0.38 (14.24) 0.02 (4.69) 0.43 (12.81) 0.39 (14.73) −0.28 (0.00)
L17 Tangxun 114.36 30.42 44.83 33.14 90.25 0.79* (61.69*) 0.55* (0.07) 0.10 (25.31*) 0.34 (0.65) −0.86* (5.89)
L18 Donghu (WH) 114.4 30.56 34.35 37.35 89.94 0.89* (80.01*) 0.81* (7.66) 0.78* (7.16) 0.41 (0.41) −0.42 (0.13)
L19 Wuhu (WH) 114.49 30.81 27.5 28.83 89.20 0.93* (87.13*) 0.70* (1.02) 0.77* (5.54*) 0.56* (30.8*) −0.56* (2.39*)
L20 Liangzi 114.51 30.23 351.77 25.77 79.88 0.91* (82.58*) 0.48 (2.34*) 0.25 (13.48*) 0.31 (1.43*) −0.69* (0.04)
L21 Baoxie 114.58 30.38 17.75 37.13 94.65 0.40 (16.03) −0.14 (0.27) 0.19 (8.30) −0.04 (3.81) 0.04 (35.61)
L22 Zhangdu 114.7 30.65 36.24 28.68 91.88 0.30 (9.15) 0.37 (4.86) −0.29 (39.00) 0.18 (3.68) −0.39 (0.08)
L23 Baoan 114.71 30.25 38.71 26.00 84.87 0.59* (34.70*) 0.59* (13.93) 0.01 (0.18) 0.27 (9.06) −0.05 (23.53)
L24 Wusi 114.71 30.45 12.00 29.86 91.71 −0.64* (40.39*) 0.18 (0.17) −0.58* (0.63) 0.14 (13.25) 0.71* (22.12)
L25 Yaer 114.72 30.46 12.64 34.49 86.94 0.96* (93.04*) 0.34 (0.06) 0.53 (0.67) 0.45 (1.31) −0.79* (0.33)
L26 Sanshan 114.77 30.31 17.83 31.71 89.96 0.89* (78.55*) −0.19 (0.01) 0.73* (0.26) 0.20 (6.66) −0.74* (0.14)
L27 Daye 115.1 30.1 73.65 30.14 89.09 0.31 (9.64) 0.69* (39.22*) 0.01 (6.66) −0.45 (17.32) −0.15 (4.46)
L28 Wanghu 115.33 29.87 42.87 24.89 81.86 0.84* (69.73*) 0.68* (6.10) −0.62* (3.47) −0.25 (5.84) 0.26 (0.62)
L29 Wushan 115.59 29.91 15.11 43.86 95.98 0.27 (7.27) −0.43 (37.60*) 0.64* (7.32) 0.28 (8.34) 0.08 (17.40)
L30 Chihu 115.69 29.78 35.9 35.74 91.44 0.23 (5.40) −0.22 (2.41) −0.37 (30.55) 0.28 (8.81) −0.19 (0.76)
L31 Taibai 115.81 29.97 27.42 28.24 93.47 0.56* (31.22*) −0.16 (20.62) 0.39 (21.78) −0.05 (12.42) −0.47 (0.13)
L32 Saihu 115.85 29.69 53.33 25.66 87.68 0.37 (13.78) −0.19 (0.56) 0.36 (53.86*) 0.12 (5.05) −0.44 (0.37)
L33 Xiayao 116.06 28.69 16.1 28.96 94.85 −0.36 (13.24) −0.72* (41.32*) −0.20 (11.48) −0.45 (17.57) −0.35 (1.52)
L34 Longgan 116.15 29.95 280.48 22.88 83.85 0.47 (21.98) 0.47 (8.64) −0.58 (29.98*) 0.43 (26.77*) −0.04 (0.80)
L35 Poyang 116.67 29.14 3206.98 24.75 78.12 0.16 (2.54) 0.06 (0.27) 0.09 (0.16) −0.17 (4.25) 0.19 (3.31)
L36 Wuchang 116.69 30.28 112.02 26.02 91.45 0.25 (6.32) −0.25 (0.87) 0.28 (2.66) 0.50 (37.33) −0.47 (0.18)
L37 Caizi 117.07 30.8 171.59 28.04 90.26 0.66* (43.69*) −0.78* (22.81) −0.21 (15.69) 0.27 (1.36) 0.07 (0.06)
L38 Shengjin 117.07 30.38 96.09 30.61 92.76 −0.34 (11.23) 0.34 (1.17) 0.08 (11.13) 0.63* (28.93*) −0.91* (40.77*)
L39 Baidang 117.38 30.81 38.69 27.01 85.54 −0.20 (3.84) −0.32 (60.55*) −0.17 (5.48) 0.07 (8.62) −0.17 (1.70)
L40 Chaohu 117.53 31.57 786.01 21.07 83.06 0.38 (14.68) −0.13 (9.41) 0.33 (2.37) 0.27 (4.59) −0.54* (23.50)
L41 Shijiu 118.88 31.47 178.04 30.65 91.04 −0.38 (14.78) −0.23 (0.00) 0.28 (3.16) −0.28 (25.11) −0.59* (14.33)
L42 Gucheng 118.92 31.28 27.9 34.09 86.15 0.33 (11.19) 0.33 (0.32) 0.47 (21.46) −0.04 (3.25) −0.85* (47.96*)
L43 Nanyi 118.96 31.11 197.83 22.64 89.33 0.45 (20.11) −0.27 (10.84) 0.80* (33.80) 0.07 (2.80) −0.12 (0.01)
L44 Changdang 119.55 31.62 84.33 29.56 94.83 −0.25 (6.14) 0.12 (4.95) 0.36 (17.48) −0.27 (23.12) −0.09 (2.26)
L45 Xijiu 119.8 31.37 11.18 26.37 93.36 0.75* (59.31*) −0.80* (4.62) 0.43 (0.18) −0.09 (3.12) −0.46 (2.71)
L46 Gehu 119.81 31.6 139.56 39.09 95.87 0.70* (49.31*) −0.60* (0.30) −0.15 (7.38) −0.55* (17.82) −0.48 (11.36)
L47 Taihu 120.19 31.2 2537.17 17.58 73.37 0.22 (5.01) 0.19 (0.45) 0.46 (34.53) 0.16 (0.19) −0.09 (9.47)
L48 Yangcheng 120.77 31.43 123.6 25.77 83.95 0.67* (45.47*) 0.85* (26.63*) 0.59* (2.89) −0.31 (13.76) −0.90* (3.71)
L49 Chenghu 120.82 31.21 37.11 25.23 83.32 0.89* (79.29*) 0.81* (0.95*) 0.55* (4.58) 0.17 (2.29) −0.78* (1.90)
L50 Dianshan 120.96 31.12 63.71 23.12 79.23 0.76* (58.42*) 0.87* (17.83) 0.54* (1.25) −0.22 (4.86) −0.80* (0.11)
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the drainage basin and was obtained from the provincial statistical
yearbook; and Ti is the number of feeding days of livestock and was
based on empirical data from Geng et al. (2013).

3. Methods

The floating algal bloom area (ABA) and Chla concentrations de-
rived from the MERIS and OLCI observations were used to examine the
eutrophic status of the Yangtze Plain lakes, and Chla estimations were
only applied to bloom-free waters. Note that the algal bloom detected in
the Yangtze Plain lakes in our study mainly represent floating cyano-
bacteria bloom, as documented in many previous studies (Duan et al.,
2012; Hu et al., 2010; Ma et al., 2008; Qi et al., 2014b; Zhang et al.,
2016; Zhu et al., 2017). The entire working flow is summarized in
Fig. 3, and the detailed methods for each step are described below.

3.1. Generation of land mask and shallow water mask

The first step is to classify the water and land area in each remote
sensing image. Based on the remarkable spectral differences, a com-
monly used spectral index, the normalized difference water index
(NDWI, estimated as (Rrc,560 - Rrc,865)/(Rrc,560 + Rrc,865), (Gao, 1996)),
was used to distinguish water from land area. The optimal image-spe-
cific thresholds were determined through an interactive graphical user
interface developed in Hou et al. (2017).

Some parts of lakes (or sub-lakes) on the Yangtze Plain showed
shallow and/or clear waters, such as eastern Taihu Lake, southern
Poyang Lake, and almost all of Honghu Lake. The reflection from the
bottom, which is mostly covered by submerged vegetation (identified
by field investigations), could contaminate the satellite signals and thus
impact the retrieval of Chla concentrations (Kutser et al., 2020). Be-
cause shallow water with submerged vegetation results in low NDWI
values similar to those obtained from vegetation-free waters, an addi-
tional mask was generated to exclude these optically shallow waters.
When comparing the true color composite, we found that the areas with
submerged vegetation (identified by field investigations) demonstrated
large color contrasts to the other inundated regions (see Fig. S2).
Therefore, a gray index (GI), estimated using the red, green and blue
bands, was adopted to separate shallow waters. The GI was estimated as
follows:

= × + × + ×GI R R R0.299 0.587 0.114rs rs rs,681 ,560 ,443 (4)

The field-derived GI values for submerged vegetation-present and
vegetation-free waters are plotted in Fig. S2, indicating that a simple
threshold (GI = 0.01) could be used to effectively discriminate the two
classes with high accuracy (86.8%), and we used this threshold to
generate the mask for separating shallow waters from submerged
plants. As submerged vegetation mainly blooms in spring, the images
collected between March and May in each year were used to create
annual masks for shallow water. Pixels that were identified as shallow
water in any image acquired between March and May were excluded
for further Chla estimation in the entire year.

3.2. Detection of the algal bloom area

The chlorophyll spectral index (CSI), based on the near-infrared
(NIR) and red bands specifically designed for MERIS (Zhu et al., 2017),
was used to distinguish cyanobacteria blooms from lake water, which
could be expressed as:

=
−
+

CSI
R R
R R

rc rc

rc rc

,754 ,681

,754 ,681 (5)

where Rrc,754 and Rrc,681 are the Rayleigh-corrected reflectance values
at 754 nm and 681 nm, respectively. The concept of the CSI is to make
use of the significant signal contrasts between ABA and algae-free wa-
ters at the NIR band (i.e., 754 nm), where a strong reflection for floating
algae and a high absorption for waters are expected. The threshold
recommended by Zhu et al. (2017), CSI = 0.11, was used in this study
to classify ABAs. The threshold was originally generated based on 52
MERIS images over Taihu Lake (Zhu et al., 2017), and a validation
performed using in situ recorded datasets collected in the Yangtze lakes
also demonstrated a high accuracy level of 88.9% for separating ABA
and algae-free waters (see Fig. S2) with OLCI images. Note that al-
though the widely used floating algae index (FAI) (Hu, 2009) is speci-
fically designed for pelagic algae detection, the absence of a shortwave
infrared band for MERIS and OLCI prohibited the application of FAI
here.

High CSI values, which are normally associated with floating algae,
can potentially originate from emergent vegetation or floating leaf ve-
getation as well, leading to a misinterpretation of the eutrophication
status. To further eliminate such impacts, the phycocyanin baseline
(PBL) (Zhu et al., 2017) was used to discriminate the algal bloom and
the above-water vegetation. The calculation of PBL is expressed as
follows:

Fig. 1. Locations of the 50 examined lakes on the Yangtze Plain of China (red box in the inset). The green polygon represents the boundary of the Yangtze Plain, and
the 11 sampled lakes are annotated with green stars. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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= − + ⎛
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−
−

⎞
⎠

× −PBL R R R R620 560
665 560

( )rc rc rc rc,560 ,620 ,665 ,560 (6)

The designation of the PBL is based on the unique curvatures of the
spectrum for bloom areas, where two valleys near 625 nm and 675 nm
could be clearly identified due to the strong absorption of phycocyanin
and chlorophyll, respectively. These distinct spectral characteristics
allow for an effective separation between cyanobacteria bloom and
aquatic vegetation. In situ recorded datasets showed that the re-
commended threshold for the PBL (PBL = 0.009) by Zhu et al. (2017)
led to an accuracy level of 77.6% (see Fig. S2). Although slightly
smaller thresholds (such as 0) may result in higher accuracy levels in
Fig. S2, a sensitivity analysis with smaller values showed almost iden-
tical long term Chla and ABA estimates (likely due to the additional

mask dilation process, see below). Therefore, the recommended
threshold (PBL = 0.009) was adopted in this study.

Before ABA delineation, a dilation process was applied to the above
mentioned masks (including for land, shallow water and emergent ve-
getation) for each image to exclude one more pixel that is adjacent to
the masks. Since these masking algorithms have already demonstrated
satisfactory performances, the expanded mask could help us to avoid
most of the problems associated with 300-m resolution induced mixing
pixel problems for MERIS and OLCI. Then, quarterly and annual ABAs,
estimated as the union areas of delineated algal blooms in all images
within the corresponding period (i.e., a quarter or a year), could be
interpreted as the maximum possible bloom area during this period.
The use of maximum instead of mean values of bloom areas was chosen
to minimize the impacts of clouds on quantified bloom conditions be-
cause the algal blooms were generally heterogeneously within a lake;
thus, the ABA detected from partially cloud-covered images could not
be used to represent the bloom conditions. The ABA of each lake was
then normalized against lake size (see Table 1) to estimate the per-
centage of ABA, allowing for cross-lake comparisons despite the sub-
stantial disparities in lake sizes. The long-term changes in the quarterly
and annual percentages of ABA were assessed for all the examined

Fig. 2. Field-measured Rrs spectra color-coded according to their Chla (upper panel) and TSS (lower panel) concentrations.

Table 2
Statistical information about the measured concentrations of Chla and total
suspended sediment (TSS) in the sampled lakes.

Min Max Median Average STD # of point

Chla, mg m−3 1.16 222.57 15.56 22.21 27.62 604
TSS, mg L−1 0.62 152.00 22.00 30.85 26.15 604
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lakes.

3.3. Development and validations of the Chla algorithm

A Chla algorithm was developed to determine the eutrophic con-
ditions for bloom-free waters. Phytoplankton pigment dominates the
absorption and scattering properties of open oceans, where blue-green
band ratios were constructed for various ocean color missions to esti-
mate the Chla concentrations (Hu et al., 2019; Hu et al., 2012; O'Reilly
et al., 2000). These NASA-standard band ratio algorithms have recently
been replaced with a band-difference approach (i.e., ocean color index
or OCI), which is expected to significantly improve image quality and
cross-sensor consistency. While the success of both the band ratio and
the OCI algorithm relies on the high absorption feature of Chla in blue
bands (Hu et al., 2019; Hu et al., 2012; O'Reilly et al., 2000), the signals
of these short wavelengths are strongly affected by the presence of TSS
and colored dissolved organic matter (CDOM) in inland and coastal
waters. Therefore, longer wavelengths (red to NIR spectral regions)
were selected to determine the Chla algorithm for these productive
waters(Gilerson et al., 2010; Gitelson et al., 2008) to minimize the
impacts of CDOM or sediment particles.

Various forms of combinations of MERIS/OLCI bands have been
proposed to empirically correlate with in situ Chla concentrations (see
Table 3), and the central wavelengths of these commonly used bands
are 620-, 665-, 681-, 709- and 754-nm. Unfortunately, these existing
retrieval algorithms exhibited poor performance (mean relative error
(MRE)> 50%, root mean square error (RMSE)>80%), even if the 604
field-collected pairs of spectra (i.e., MERIS/OLCI-equivalent bands) and
Chla measurements from the Yangtze Plain lakes were used to recali-
brate the algorithm coefficients (see Table 3). All these algorithms were

well designed for inland or coastal waters, and their unsatisfactory
performance was likely due to the higher turbidity of the lakes used in
our study (TSS concentration reached> 100 mg L−1, see Table 2)
compared with the waters that were examined in previous studies.
Therefore, a new retrieval algorithm was developed to accurately ob-
tain the Chla concentrations of our studied waters (i.e., the Yangtze
Plain lakes) using MERIS and OLCI observations.

While the combinations of NIR and red bands could not construct
accurate empirical Chla algorithms, significant correlations were found
between all these combinations and in situ Chla (R2 > 0.6) (see Fig.
S3). Support vector regression (SVR), a machine learning method, was
then adopted to determine whether the NIR/red band combinations had
a certain implicit nonlinear relationship with Chla. If so, then the SVR
could better capture the observed variations in Chla. The detailed
procedures used to establish a satisfactory algorithm are described
below.

Linear correlations between all possible combinations (two or three
bands) of the five red and NIR bands (620-, 665-, 681-, 709- and 754-
nm) and in situ Chla were conducted. For correlation analysis, the
normalized Rrs (denoted as R'rs) values were used to minimize the first-
order reflection signals from water turbidity (Feng et al., 2014b; Zhang
et al., 2008a). The R'rs for each band (λi) was estimated as the Rrs at this
band normalized against the summation of MERIS and OLCI bands
centered at 412-, 443-, 490-, 510-, 560-, 620-, 665-, 681-, 709-, 754-
and 865-nm:

∫′ =R λ R λ R λ dλ( ) ( )/ ( )rs i rs i
n

rs i1 (7)

The band combinations with high correlations were then selected as
the inputs of SVR. To train and test the SVR model, the 604 Rrs-Chla
pairs were randomly divided into two groups, where 495 pairs from 11

Fig. 3. Framework used to determine the lacustrine eutrophication state in this study. CSI, chlorophyll spectral index; NDWI, normalized difference water index; GI,
gray index; and PBI, phycocyanin baseline.

Table 3
Performance of different Chla retrieval algorithms, where the coefficients were recalibrated using the field-measured spectra and Chla datasets of the current study.
Accuracy matrices for Chla estimates using both in situ (converted into satellite equivalent data using spectral response function for each band) and satellite Rrs are
listed in the table.

Model Order Model inputs Equation form In situ-based Satellite-based

MRE (%) RMSE (%) R2 MRE (%) RMSE (%) R2

Smith et al. (2018) Piecewise x = Rrs,709/ Rrs,665 or Color Index (CI) y = (35.75*x-19.3)1.124 or ChlaOCI 50.54 82.13 0.60 66.12 88.26 0.23
Yang et al. (2010a) NLR x = (R−1

rs,665- R−1
rs,709)/(R−1

rs,754- R−1
rs,709) y = 79.855*x + 19.428 63.93 114.63 0.67 57.01 83.85 0.16

Neil et al. (2019) Power x = Rrs,709/ Rrs,665 y = 16.409*x2.1313 58.00 93.50 0.60 50.00 65.35 0.05
Gurlin et al. (2011) Poly (2d) x = (R−1

rs,681- R−1
rs,709) Rrs,754 y = 77.199*x2 + 107.51*x + 18.695 66.81 119.33 0.70 67.54 98.97 0.15

Gurlin et al. (2011) Poly (2d) x = Rrs,709/ Rrs,665 y = 4.144*x2 + 40.004*x-22.889 64.96 104.27 0.62 57.60 78.73 0.22
Gilerson et al. (2010) NLR x = Rrs,709/ Rrs,665 y = 53.33*x-31.408 64.41 101.27 0.62 72.56 92.75 0.02
Gitelson et al. (2008) NLR x = (R−1

rs,681- R−1
rs,709) Rrs,754 y = 145.88*x + 20.043 59.53 101.40 0.69 54.38 80.44 0.18

SVR (this study) Piecewise Described in Section 3.3 and 4.1 – 25.67 35.46 0.93 26.92 33.13 0.55
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lakes were used for training and the other 109 pairs from 8 lakes were
used to validate the relationships. The kernel function for SVR was set
as the radial basis function (RBF), and the grid iterative approach was
employed to search the optimal penalty factor c and kernel function
parameter δ to avoid under-fitting and overfitting problems (Su et al.,
2015; Sun et al., 2009; Xiao et al., 2018). To evaluate the performance
of SVR, the accuracy matrices were used based on the Chla estimates
and field-measured samples, which include the MREs, RMSEs, unbiased
relative mean-squared errors (URMSs), median ratio (MedR), mean
ratio (MeanR) and coefficient of determination (R2). After training and
testing the SVR model, a reliable retrieval algorithm for Chla con-
centration at the basin scale was established.

The SVR algorithm based on in situ measurements was further va-
lidated through comparison between the satellite-derived and in situ
Chla concentrations to assess its applicability for satellite observations
(see Table 3). Atmospherically corrected MERIS and OLCI Rrs values
were fed into the algorithm to estimate Chla concentrations for com-
parison with the concurrent in situ measurements. Several criteria were
used to determine the satellite and in situ concurrent match-ups: first,
the time differences between satellite overpassing and field sample
collection was within 3-h to eliminate the effect of changes in the water
conditions; second, a homogeneity test was applied to the satellite re-
trievals, discarding data with coefficients of variation (CVs) of the
3 × 3 window centered at the location of the field sampling>15%;
and third, areas with optically shallow waters within the 3 × 3 window
(see detection method above) were removed. The same accuracy ma-
trices were employed to assess the performance of the SVR-based re-
trieval algorithm on the MERIS and OLCI images. Note that, when de-
termining the Chla concentrations, pixels associated with ABA regions
and one additional pixel adjacent to ABA regions were removed to
avoid potential mixtures between algae-free and bloom-occurred waters
due to the 300-m resolution of the satellite images.

3.4. Assessments of the eutrophication status

To determine the chances of eutrophication for each lake, the an-
nual probability of eutrophication occurrence (PEO) was estimated for
all lakes: for both the MERIS and OLCI images, when a pixel had a Chla
value>10 mg m−3 (Shu, 1993) or was detected as an ABA, it was
classified as a eutrophication region. The PEO (in percentage) was
calculated as the number of times a pixel classified as an eutrophication
region normalized against the number of valid satellite observations at
the same location and within the same period (i.e., without con-
taminations with clouds and sun glint). Then, the mean PEO values
were estimated for all lakes in the study period (see Table 1). Linear
regression was then employed over the annual mean PEOs for each lake
to explore the long-term trend of the lacustrine eutrophication status.

4. Results

4.1. Performance of SVR-based retrieval algorithm

After linear correlation analysis, six band combinations with high
correlations (R2 > 0.60), including R'rs,709/R'rs,620, R'rs,709/R'rs,665,
R'rs,709/R'rs,681, (R'rs,620-R'rs,709)R'rs,754, (R'rs,665-R'rs,709)R'rs,754, and
(R'rs,681-R'rs,709)R'rs,754 (relationships see Fig. S3), were selected as the
inputs of the SVR model. The training and testing datasets were then
used to train and test the SVR model, respectively. Comparisons be-
tween the estimated and field-measured Chla concentrations and the
accuracy matrices are shown in Fig. 4 and Table 4, respectively. Al-
though the accuracy matrices could vary between different lakes, si-
milar overall uncertainty levels were found between the training and
testing datasets, with an overall MRE of ~36%, an RMSE of ~60% and
an URMS of ~40%, where the in situ and SVR-retrieved Chla were
significantly correlated without apparent biases (R2 > 0.9, MedR of
~1 and MeanR of ~1.15). Nevertheless, the scatter plots between the

model-predicted and in situ-measured Chla demonstrated considerable
uncertainty at low Chla values (see Fig. 4). Specifically, the uncertainty
levels decreased with increasing Chla values until reaching Chla values
higher than 10 mg m−3. Therefore, further refinement of the SVR
model was required to improve the performance at low Chla conditions.

The training samples with Chla< 10 mg m−3 were selected (141
pairs) to re-train an SVR model that is more suitable for low Chla
concentrations. The correlations between the R'rs and in situ Chla were
reanalyzed, and significant correlations were then found between the
log-transformed Chla and several band combinations. The band com-
binations included the band ratios of R'rs,620/R'rs,709, R'rs,665/R'rs,709 and
R'rs,681/R'rs,709, and the spectral derivative of (R'rs,709-R'rs,620)/
(709–620), (R'rs,709-R'rs,665)/(709–665), and (R'rs,709-R'rs,681)/(709–681)
(see Fig. S4). The band combinations of these low Chla pairs were
processed using the same method above to retrain the whole SVR
model, with the expectation that the resulting algorithm (denoted as
SVR-modelsmall) could derive more accurate Chla retrievals for low Chla
conditions. Indeed, the validations from both the training and the
testing datasets demonstrated substantial improvements for low Chla
(i.e., < 10 mg m−3) when the SVR-modelsmall was used (see the solid
points in Fig. 4), as demonstrated by the closer proximities of the points
to the 1:1 line in Fig. 4. When the SVR model was used for high Chla
and the SVR-modelsmall was used for low Chla, both the training and the
testing datasets showed improved estimations of the observed Chla
matrices (i.e., overall MRE of< 25%, RMSE of< 36%, URMS
of< 33%, MedR/MeanR close to 1 and R2 > 0.93). Such accuracy
levels appear comparable to the goal of ocean color satellite missions in
obtaining Chla concentrations in global oceans (i.e., an uncertainty
level of 35%) (Hu et al., 2012; O'Reilly et al., 2000).

From the above analysis, a piecewise Chla retrieval algorithm is
proposed, with the SVR-model and SVR-modelsmall applied for high and
low Chla, respectively. In practice, a transition range (10–13 mg m−3)
instead of an absolute threshold (i.e., 10 mg m−3) was used to assure
smooth transitions between the two SVR models on Chla maps. The
piecewise algorithm can be expressed as follows:

′ =
⎧

⎨
⎪

⎩⎪
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× + × < ≤
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The total numbers of the resulting concurrent match-ups between in
situ observations and satellite data were 61 and 119 for MERIS and
OLCI, respectively; MERIS data were only found in Taihu Lake, and
OLCI match-ups were obtained from three lakes (Taihu Lake, Poyang
Lake and Honghu Lake) because of unfavorable conditions (such as
clouds and sun glint) during the satellite observations. The comparison
of the satellite-based and in situ Chla is shown in Fig. 5. The plots of the
predicted and measured Chla were generally distributed along the 1:1
line for both instruments and for all the lakes, and the associated ac-
curacy statistics showed favorable performances (i.e., uncertainty le-
vels< 40% without systematic biases). Satellite-based validations also
showed smaller uncertainty levels of the SVR-based algorithm com-
pared with the existing Chla algorithms (see Table 3). Considering the
differences in spatial scales (300 × 300 m for MERIS and OLCI, and
point-based observations for field sampling), the overall performance of
the piecewise retrieval algorithm was considered acceptable. Therefore,
the algorithm in Eq. (8) was used to derive the long-term Chla con-
centrations for the study lakes with MERIS and OLCI observations.

4.2. Long-term eutrophication change patterns in lakes on the Yangtze Plain

Eq. (8) was used to generate a Chla map for each MERIS and OLCI
image. The averaged quarterly Chla was computed to represent the
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quarterly mean values, where the four quarterly means were further
averaged to estimate the annual mean Chla. The 11-year mean values of
Chla were calculated from the annual mean values for both MERIS
(2003–2011) and OLCI (2017–2018). Considerable differences were
found in mean Chla among the examined lakes (Fig. 6a, Table 1), where
the mean Chla concentration ranged from 17.58 mg m−3(Taihu Lake)
to 43.86 mg m−3(Wushan Lake) in the Yangtze Plain. Generally, large
Chla values occurred in small lakes (red colors in Fig. 6a), and large
lakes were often found to have a low climatological mean Chla (blue

colors in Fig. 6a). In terms of long-term trends, statistically significant
increasing trends (i.e., p < .05) were found in 11 lakes, and statisti-
cally significant decreasing trends occurred in only 6 lakes (annotated
with “↑” and “↓”, respectively, in Fig. 6a). Spatially, the lakes with
significant increasing trends were mainly located upstream of Poyang
Lake, while lakes with statistically significant decreasing trends were
mainly located within Jiangsu Province. The seasonality of the Chla
distributions could be observed from the climatological quarterly mean
Chla maps in Fig. 7. Most of the lakes demonstrated their largest Chla

Fig. 4. Comparison between in situ measured Chla and SVR-estimated Chla for training (a) and testing (b) datasets. The solid points and colored circles indicate the
Chla estimates with and without the refinement process for low Chla values (i.e., < 10 mg m−3), respectively. The bottom panels present the unbiased mean relative
error (UMRE, red lines) and unbiased relative mean-squared error (URMS, green lines) as a function of Chla for training (c) and testing (d) datasets. The dashed and
solid lines indicate the results with and without the refinement process for low Chla values, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 4
Performance of the SVR-based piecewise retrieval algorithm for individual lakes based on Chla estimated using field-measured spectra.

Name MRE/% RMS/% UMRE/% URMS/% MedR MeanR R2 R2 (Log) N

Training dataset Taihu 20.16 31.53 19.39 27.66 0.95 1.02 0.92 0.87 272
Poyang 15.99 21.79 16.78 22.01 0.89 0.92 0.62 0.75 67
Honghu 14.12 22.53 13.62 21.14 1.01 1.03 0.98 0.97 67
Chenghu 26.61 36.29 24.38 29.99 0.95 1.06 0.66 0.59 24
Shijiu 23.03 30.76 24.42 32.11 0.89 0.93 0.03 0.05 17
Huangda 13.13 19.92 12.55 17.78 1.02 1.02 0.94 0.97 13
Yangcheng 31.63 41.93 27.75 34.52 0.99 1.13 0.36 0.37 10
Dongting 22.80 27.67 26.74 34.48 0.88 0.86 0.47 0.78 9
Longgan 14.31 17.12 13.97 16.25 0.96 1.01 0.67 0.72 8
Gehu 8.20 16.56 9.91 20.71 0.98 0.92 0.99 0.98 6
Chaohu 14.79 17.79 17.10 20.36 0.91 0.91 N/A N/A 2
Overall 19.03 29.06 18.58 26.28 0.98 1.00 0.96 0.90 495

Testing dataset Taihu 25.77 37.42 24.46 33.41 1.00 1.05 0.97 0.92 40
Poyang 19.20 23.19 18.05 22.05 1.04 1.04 1.00 0.90 17
Honghu 22.64 40.08 28.52 35.59 0.90 0.95 0.85 0.92 16
Chenghu 30.17 33.33 33.00 38.00 0.83 0.91 0.68 0.73 10
Shijiu 18.36 23.48 20.75 23.80 0.90 1.00 0.90 0.95 8
Huangda 39.10 54.65 27.43 36.67 1.21 1.37 0.90 0.89 7
Gehu 23.31 28.99 28.63 36.76 0.82 0.77 0.52 0.47 6
Longgan 23.04 28.05 27.86 34.64 0.76 0.79 0.74 0.91 3
Overall 25.67 35.46 25.28 32.81 0.95 1.01 0.93 0.88 109

Q. Guan, et al. Remote Sensing of Environment 246 (2020) 111890

9



values in the second and third quarters of a year (see Fig. 7e), and cold
seasons (especially quarter 1) often showed the lowest Chla within a
year. While Chla seasonality could be observed across the panels,
substantial spatial disparities in Chla within the larger lakes were also
found.

Algal bloom detection was conducted for all 50 examined lakes at
quarterly and annual timescales to determine the ABA percentage
(Fig. 8). Similar to many other previous studies (Li et al., 2017; Zhang
et al., 2016; Zhang et al., 2015), severe floating algal blooms were
found in Taihu Lake and Chaohu Lake. The annual ABA of Chaohu Lake
showed strong annual variability but significantly increased trend
throughout the observational period. Likewise, an increasing trend was
observed in Taihu Lake, e.g., the ABA was 6.95% (176 km2) in 2003 but
75.25% (1909 km2) in 2017. Seasonal variations were also present in
the ABA percentage, where larger blooms generally occurred in warmer
seasons, similar to the patterns observed in the Chla concentrations. In
addition to the two previously known lakes with algal blooms, there
were another five lakes on the Yangtze Plain that were found to have
evidential algal blooms, including Beimin Lake, Huanggai Lake,
Wanghu Lake, Tangxun Lake and Zhangdu Lake. Serious algal blooms
occurred in Huanggai Lake in most of the observational years except for
2009 and 2011, and the bloom area reached> 85% in the two con-
secutive years of 2005 and 2006. Beimin Lake also showed large-scale
algal blooms in several years, with an annual mean coverage>67.5%
of the lake area whenever the bloom occurred in that year. The first
algal bloom of Wanghu Lake was found in 2008, and then blooms re-
occurred in this lake in all subsequent years except 2009. Another
important finding was that the algal blooms in Tangxun Lake and
Zhangdu Lake were found only in the OLCI observation period, further
indicating the strength of using multisource remote sensing observa-
tions. Notably, the annual algal bloom percentages demonstrated dif-
ferent fluctuation patterns from those of the PEOs for most of the 7
lakes.

The long-term mean PEO map is shown in Fig. 6b, where all of the
lakes showed a mean value of> 50% (mostly> 80%), suggesting the
extremely high probability of eutrophication for lakes on the Yangtze
Plain. The highest mean PEO value (95.9%) was found in Gehu Lake,
indicating that almost the entire observational period showed

eutrophication (i.e., Chla> 10 mg m−3 or algal bloom detected) from
the MERIS and OLCI observations. Similar to the patterns observed for
Chla, large lakes tended to have lower PEOs than small lakes. The long-
term interannual changes in the PEO for all 50 lakes were illustrated in
Fig. 9. Although the annual mean PEO values fluctuated throughout the
period, 21 out of 50 lakes (42%) demonstrated statistically significant
decreasing trends in PEO (annotated in Fig. 6b and Fig. 9), while only
Wanghu Lake showed statistically significant increasing trends in PEO
(annotated in Fig. 6b and Fig. 9).

4.3. Analysis of potential driving forces

To further understand the impacts of the natural factors and human
activities on the interannual variability of the eutrophication condi-
tions, correlations between the annual mean PEO and the concurrent
driving factors (i.e., temperature, precipitation, chemical fertilizer, in-
dustrial wastewater and biological excrement) for each lake were
analyzed, and the correlation coefficients are listed in Table 1. The PEO
of these examined lakes exhibited significant correlations with different
driving factors, which indicated that the dynamics of eutrophication
conditions were affected by different natural and anthropological fac-
tors. The PEO of many lakes was significantly correlated with more
than one factor, suggesting the complexity of the controlling environ-
ments that affect phytoplankton growth. Indeed, 70% (35/50) of the
studied lakes were statistically significantly correlated (p < .05) with
at least one of the given five driving factors (see Table 1).

Specifically, statistically significant positive correlations (p < .05)
were revealed between the annual mean PEO and the annual con-
sumption of chemical fertilizer in 18 lakes (see Fig. S5), suggesting the
remarkable detrimental impacts of agricultural nonpoint pollution
sources in this region. Moreover, 12 of the lakes had PEO values that
were positively correlated (p < .05) with the industrial wastewater
(see Fig. S6), and 10 lakes had significant positive correlations
(p < .05) between the PEO value and the amount of biological ex-
crement surrounding the lake (see Fig. S7). In terms of natural factors,
the annual mean PEO of 16 lakes showed significant negative correla-
tions (p < .05) with the annual mean precipitation (see Fig. S8), and
significant positive relationships (p < .05) between PEO and tem-
perature were found in 5 lakes (see Fig. S9). Note that opposite re-
lationships to the aforementioned correlations were also found between
the PEO and these examined factors, while the number of lakes with
such abnormal correlations were relatively limited (see Table 1). In-
deed, when considering only the 21 lakes with a significant decreasing
trend in PEO (see Fig. 6b), similar correlation patterns were found
compared to the situations when all lakes were included, where the
PEOs were significantly correlated with various factors without a
dominant factor.

A multiple general linear model regression (Tao et al., 2015) was
used to quantify the relative contributions of these natural and an-
thropological factors to the interannual changes in the PEO of each
examined lake. As shown in Table 1, the total contributions of these five
driving factors varied from 10.52% to 99.86%, with 42 of the lakes
showing a total value of> 50%. The mean total contribution for the 50
lakes was 72.26% ± 20.49%, indicating that these five natural and
anthropological factors explained substantial amounts of the inter-
annual dynamics in PEO for most of the 50 lakes. Specifically, fertilizer
use was highly correlated with the PEO in Wanghu Lake (R2 = 0.84)
(see Table 1), and the significant increase fertilizer use in this lake
contributed to 69.73% of inter-annual changes of PEO, making Wanghu
Lake the only lake that showed significantly increased PEO during the
observed period (see Fig. 9). Nevertheless, we acknowledge that more
sophisticated ecological models are required in the future to understand
the physical mechanisms of the impacts of these factors, particularly in
relation to the overall decreasing patterns of the PEO in recent years.

Fig. 5. Validation of the satellite-predicted Chla concentrations using in situ
Chla data obtained from different lakes and satellite instruments. The accuracy
measures estimated for both MERIS and OLCI are also annotated.
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5. Discussion

5.1. Uncertainties in the estimated eutrophication

Using the retrieved Chla and delineated ABA from the MERIS and
OLCI images, the temporal and spatial changes in the eutrophication
status for 50 large lakes on the Yangtze Plain have been documented,
and obtaining such changes with traditional field sampling methods
alone appears challenging. The accomplishments of the current study
could primarily be attributed to the following reasons: 1) the avail-
ability of long-term MEIRIS and OLCI images, with adequate resolutions
in the spectral and spatial domains and similar band configurations
between the two instruments; and 2) sufficient field measurements from
various lakes and across different seasons on the Yangtze Plain, which
made it possible for us to develop and evaluate a machine-learning-
based Chla algorithm. Nevertheless, there are still limitations in terms
of quantifying the eutrophication status of lakes on the Yangtze Plain.

Although both MERIS and OLCI had a revisiting period of 2–3 days
because of their wide swath (1150 and 1270 km, respectively), the
number of usable images was limited due to the non-optimal observa-
tional conditions, which is a common problem for remote sensing-based
optical observations. The global mean cloud coverage was estimated to
be higher than 70% (King et al., 2013), which could substantially

reduce the chance of obtaining high-quality optical remote sensing
observations. Although the atmospheric correction method used in this
study (POLYMER) has shown to be insensitive to sun glint and cloud
straylight when compared with the classic approaches (Steinmetz et al.,
2011; Steinmetz and Ramon, 2018; Zhang et al., 2018), the percentage
of high-quality images was only ~17% of the entire data archive for the
study area. Considerable data gaps could thus be found during the
observational period, even with the entire dataset obtained from MERIS
and OLCI, leading to potential uncertainties in the derived annual mean
data and then the long-term trends. We tried to minimize such un-
certainties through the currently used statistical schemes, where the
annual mean Chla or ABA were estimated from the corresponding four
quarterly mean values instead of the mean daily values within a year.
Certainly, more frequent (daily or even hourly) satellite observations
are recommended in the future to monitor the short-term to long-term
variability of the dynamic water optical properties.

The POLYMER approach used here showed better performance than
the SeaDAS embedded atmospheric correction algorithm (see Fig. S1).
Nevertheless, previous studies has been previously reported that
POLYMER may have larger uncertainties on blue bands than longer
wavelengths (Zhang et al., 2018), while this issue has been largely
circumvented in the current study, where the short wavelengths have
already been excluded from Chla estimation to eliminate the signal

Fig. 6. Spatial distributions of climatological (a) Chla and (b) PEO for the 50 studied lakes on the Yangtze Plain (YP) from the MERIS and OLCI observations. The
annotations “↑” and “↓” represent statistically significant increasing and decreasing trends, respectively, over the study period. The numbers in the parenthesis beside
the legend are the number of lakes within the corresponding ranges.
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interventions from TSS and CDOM in inland and coastal waters. Fur-
thermore, the exclusion of blue bands could minimize the residual er-
rors from the bottom reflection, even after masking shallow water. This
result is because short wavelengths often suffer from more severe
contamination from bottom reflection due to their smaller water ab-
sorption coefficients and thus stronger penetration capability (Barnes
et al., 2013; Lee et al., 1999; Mobley and Sundman, 2003). Never-
theless, future efforts are required to develop more advanced techni-
ques to quantify the signals from shallow lake bottoms and allow for
conducting Chla retrieval in the currently masked optically shallow
waters.

The SVR algorithm was developed using the common bands (620-,
665-, 681-, 709-, 754-nm) available for both MERIS and OLCI, where
the spectral ranges and band widths are highly consistent, making it
possible to compare and quantify water quality changes using the data

collected from these two instruments. However, the OLCI data are
available only since 2017, approximately 5 years after MERIS stopped
functioning. Although other satellite ocean color instruments (such as
MODIS and VIIRS) have more continuous observations, they may be
useful only for ABA detection and not for retrieving Chla on the Yangtze
Plain because of the limited spectral information for these satellites,
and/or they may be prone to saturation characteristics that prevent
their capability to quantitatively retrieve Chla in the lakes on the
Yangtze Plain. The gaps in the derived Chla between 2012 and 2016 for
the Yangtze Plain lakes could also exist for many other similar water
bodies in the world, which highlights the importance of continuous
high-quality ocean color satellite measurements in the future.

The MERIS-derived PEO appeared to be lower than that from the
OLCI for most of the lakes, and a possible systematic bias between these
two instruments could also lead to such differences. Unfortunately,

Fig. 7. The climatological quarterly-mean Chla distributions of the studied lakes (a-d represent from quarter 1 to quarter 4). (e) Histogram showing the number of
lakes with minimum or maximum Chla occurring in different quarters (Q1 to Q4).
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direct comparison between these two types of observations is not pos-
sible due to the unavailability of concurrent observations. However, an
alternative approach to determine the potential systematic bias be-
tween MERIS and OLCI could be the comparison of Chla concentrations
derived from equivalent Rrs of MERIS and OLCI using field measure-
ments. The spectral response functions of MERIS and OLCI were em-
ployed to compute the equivalent Rrs, which were then fed into the
SVR-based Chla algorithm. When plotting the Chla retrievals for the
two instruments (i.e., Rrs computed with different spectral response
functions) against each other (see Fig. 10), a high consistency was
found between MERIS and OLCI (R2 = 0.99, slope = 1.03), indicating
limited impacts of the cross-sensor differences on the long-term trends
of lacustrine eutrophication conditions. Indeed, such high agreement
was because the spectral bands used for Chla retrieval shared very si-
milar band configurations (central wavelengths and band widths) be-
tween MERIS and OLCI. Furthermore, MERIS and OLCI share a number
of other similarities, including field-of-view (68.5° for both), swath

width (1150 km for MERIS and 1270 km for OLCI, respectively), and
smile effects (1.7 nm for different cameras and 1.0 nm within one
camera for MERIS and 1.4 nm for different cameras and 1.0 nm within
one camera for OLCI) (D'Alba and Colagrande, 2005; Vicent et al.,
2016; Zurita-Milla et al., 2010), further indicating that Chla estimates
using MERIS and OLCI should present small difference. Slightly lower
signal to noise ratios of MERIS relative to OLCI are also unlikely to
cause substantial differences in the Chla estimates (Bulgarelli and
Zibordi, 2018), particularly for the productive inland waters (and thus
high reflective signal) that were examined in our study. Moreover, the
validity of the results could be further justified based on the two rea-
sons: First, the performance of the derived Chla algorithm was sa-
tisfactory with both observations; second, a systematic bias could not
explain the diverged change patterns of the PEO between different lakes
(see Fig. 9).

The relatively coarse spatial resolution (300 m) for MERIS and OLCI
may also introduce some uncertainties to the ABA and Chla estimates,

Fig. 8. Long-term changes in the quarterly and annual algal bloom area (ABA) percentage for 7 lakes where algal blooms were detected by MERIS and/or OLCI. The
annual probability of eutrophication occurrence (PEO) for these lakes is also plotted. Shaded gray bar in each panel represents the observational gap between MERIS
and OLCI.
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due to the heterogeneous nature of the aquatic environments (i.e.,
mixtures between algal bloom, shallow water, aquatic vegetation, etc.).
Such impacts could be substantially reduced since we dilated one pixel
over the masks determined for these perturbations. Nevertheless, even
with 30 m spatial resolution and hyperspectal measurements (i.e.,
Hyperion), extremely small cyanobacterial blooms may be difficult to
identify (Kutser et al., 2006). Therefore, advancements in satellite ob-
servations with higher resolution are required to minimize the mixing
pixel associated problems.

5.2. Implications for lake ecosystems and society

Severe eutrophication can not only lead to cyanobacterial blooms
that damage the aquatic ecosystem but also threaten public health by

releasing toxic substances (i.e., microcystins) (Duan et al., 2014; Guo,
2007; Hu et al., 2010; Qin et al., 2007). Indeed, the lakes on the
Yangtze Plain provide valuable water resources for surrounding cities
or counties, which have more than 150 million people (numbers were
estimated from (Wang, 2019; Xu and Wang (2017)). The quantified
Chla concentration and the eutrophication status of 50 large lakes in
this region can serve as baseline information for assessing the safety of
drinking water resources (Duan et al., 2014; Xie et al., 2010). Moreover,
the frequent OLCI observations for the entire globe are applicable to
provide real-time and basin-scale monitoring of drinking water quality
and potential risks once the currently developed methods are im-
plemented as an operational mode.

Fishery aquaculture is extensively developed in the Yangtze Plain
lakes to increase the incomes of the local residents and to meet the

Fig. 9. The interannual changes in the mean PEO for each of the examined lakes on the Yangtze Plain observed from MERIS (2003 to 2011) and OLCI (2017 to 2018)
observation periods, respectively. Lakes with statistically significant trends are annotated with arrows (blue and red represent decreasing and increasing trends,
respectively). Shaded gray bar in each panel represents the observational gap between MERIS and OLCI. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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demand for protein food in the local region and in China (Chen et al.,
2009; Hubacek et al., 2007; Poston and Duan, 2000); additionally, the
production in the Yangtze Plain area accounts for ~60% of the total in
the country (Fu et al., 2003). The aquaculture zones in the lakes are
often separated from the main lake, by physical dikes or fishery nets.
Such constructions could impact the circulation of water flow, poten-
tially leading to less mixing and decomposing pollutants than that in
natural water (Yuan et al., 2011). Furthermore, the use of bait, fertilizer
and fishery drugs, with a direct loading of nutrients (e.g., nitrogen and
phosphorus) into lakes, could significantly aggravate the eutrophication
status in the lake water (Liu et al., 2013; Qin et al., 2007; Xu et al.,
2010). To assess the impact of the fishery on the spatiotemporal dy-
namics of Chla and ABA, determining the exact locations of aquaculture
is needed. Such a task appears to be challenging without continuous
water quality estimates from large-scale satellite observations because
the aquaculture activities are heterogeneously distributed in both the
temporal and the spatial domains.

6. Conclusions

We proposed a SVR-based piecewise algorithm to accurately re-
trieve the Chla concentrations of 50 lakes on the Yangtze Plain using
MERIS and OLCI images. The Chla estimates, together with satellite
delineated ABAs, were used to determine the eutrophication status of
the lake waters. All 50 examined large lakes showed high probabilities
of eutrophication, with a climatological mean PEO > 50%
(mostly> 80%). The PEO demonstrated statistically significant de-
creasing trends in 21 of the studied lakes for the period of the MERIS
and OLCI observations, indicating the recent alleviation of eu-
trophication problems. To our knowledge, this study is the first attempt
to comprehensively assess the eutrophication dynamics of basin-scale
lakes on the entire Yangtze Plain. The SVR-based framework estab-
lished in this study, explicitly developed for working with lakes with
large variability of eutrophication levels, could be transferred to other
regions and potentially to other inland and coastal environments for
tracing long-term dynamics of water quality based on other satellite
observations.
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